Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Подробный обзор

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра «Быстрый счет»

Игра «быстрый счет» поможет вам усовершенствовать свое мышление. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Игра «Быстрое сложение»

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Игра «Математические матрицы»

«Математические матрицы» великолепное упражнение для мозга детей, которое поможет вам развить его мыслительную работу, устный счет, быстрый поиск нужных компонентов, внимательность. Суть игры заключается в том, что игроку предстоит из предложенных 16 чисел найти такую пару, которая в сумме даст данное число, например на картинке ниже данное число «29», а искомая пара «5» и «24».

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Игра «Визуальная геометрия»

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Игра «Упрощение»

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Литература[править | править код]

Энциклопедии

Математика // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907. (см. ISBN )

Россия/Русская наука/Математика // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907. (см. ISBN )

  • Математическая энциклопедия (в 5-ти томах), 1980-е гг. // Общие и специальные справочники по математике на EqWorld
  • Кондаков Н. И. Логический словарь-справочник. М.: Наука, 1975.
  • Энциклопедия математических наук и их приложений (нем.) 1899—1934 гг. (крупнейший обзор литературы XIX века)
Справочники
  • Сборник задач по высшей математике преподавателей Института Инженеров Путей Сообщения / А. А. Адамов, А. П. Вилижанин, Н. М. Гюнтер, А. Н. Захаров, В. М. Мелиоранский, В. Ф. Точинский и Я. В. Успенский. — СПб., 1912
  • Шахно К. У. Справочник по элементарной математике. — Л., 1955
  • Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров М., 1973 г.
Книги

Клайн М. Математика. Утрата определённости. — М.: Мир, 1984. (см. ISBN )

Клайн М. Математика. Поиск истины. — М.: Мир, 1988. — 295 с. (см. ISBN )

Клейн Ф. Элементарная математика с точки зрения высшей.

  • Том I. Арифметика. Алгебра. Анализ М.: Наука, 1987. 432 с.
  • Том II. Геометрия М.: Наука, 1987. 416 с.
  • Курант Р., Г. Роббинс. Что такое математика? 3-e изд., испр. и доп. — М.: 2001. 568 с.
  • Писаревский Б. М., Харин В. Т. О математике, математиках и не только. — М.: Бином. Лаборатория знаний, 2012. — 302 с. (см. ISBN )

Пуанкаре А. Наука и метод (рус.) (фр.)

  • Бобров С. П. Волшебный двурог М.: Детская литература, 1967. 496 с.
  • Дьюдени Г. Э. Кентерберийские головоломки; 200 знаменитых головоломок мира; Пятьсот двадцать головоломок
  • Кэррол Л. История с узелками; Логическая игра
  • Таунсенд Чарлз Барри. Звёздные головоломки; Самые весёлые головоломки; Самые трудные головоломки из старинных журналов
  • Перельман Я. И. Занимательная математика

Классы математик (разряды и классы)

Чтобы детям было проще ориентироваться в числах, да и не только детям, было придумано разделение числа на классы и разряды.

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 — класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Такое разделение действительно очень удобно и легко запоминается. Гораздо проще в ходе обучения детей математике, рассказывая о какой-нибудь операции, говорить, как складывать столбиком, например. Потому что в ходе рассказа можно называть числа по разрядам и классам и так будет намного понятнее ученику, нежели просто называть цифрой.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Архимед

Известен: принцип Архимеда; гидростатика

Архимед родился примерно в 287 г. до н.э. в Сиракузах, Сицилия. Он хорошо разбирался в математике, физике и астрономии того времени. Он был эрудитом. Однако большинство его литературных произведений не сохранилось.

Архимед был одним из пионеров геометрии, который вывел формулы для площади круга, объема и площади поверхности сферы. Его метод определения значения числа пи оставался бесспорным и единственным известным способом вычисления окружности круга на протяжении десятилетий.

Филдса, самая высокая честь в области математики, несет портрет (справа облицовочный) Архимед вместе с цитатой приписываемой ему.

«Transire suum pectus mundoque potiri» — поднимись над собой и овладей миром.

Понятие числа. Виды чисел

В понятие числа входит обозначение количественного состава чего-либо.Это одно из главных определений в математике. Каждый вид числа появлялся в результате необходимости выполнения человеком тех или иных расчетов. В связи с необходимостью владеть информацией о количестве предметов, появилось понятие натурального числа и бесконечности ряда натуральных чисел. Необходимость измерения площадей, длин, объемов — породила рациональное число. Для решения сложных уравнений ввели комплексные числа.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

  • Натуральные числа — это числа, получаемые при определении количества 1,2,3. Множество таких чисел принято обозначать буквой N. Например: 1,2,3 …..
  • Целые числа. Определение понятия формулируется так: множество натуральных, отрицательных чисел и нуль. Их принято обозначать буквой Z. Например: -2,-1,0,1,2,3,4…..
  • Рациональные числа. В понятие рационального числа входят дроби m/n, где n≠0, при этом m — целое число, а n — натуральное. Обозначаются буквой Q. Например: 2/3, -4/5
  • Действительные. В понятие действительного числа включены рациональные и иррациональные числа, которые могут записываться в виде обычной и десятичной конечной и бесконечной дробей, а также нуль. Обозначаются буквой R. Например: 1245, 5⅔, -648,35
  • Простыми называют натуральные числа, которые можно представить в виде двух множителей — единицы и самого этого числа. Обозначается буквой Р. Например: 1,3,7,11….
  • Также существуют Иррациональные числа – это числа, не являющиеся рациональными, то есть нельзя представить в виде дроби m/n, где n≠0, при этом m — целое число, а n — натуральное. Например, число  пи=3,1415926535, число e=2.718281828, квадратный корень из 3 и так далее.

Сриниваса Рамануджан

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Известен: гипотеза Рамануджана – Петерссона; Основная теорема Рамануджана

Сриниваса Рамануджан был, пожалуй, самым замечательным математиком в современной Индии. Хотя Рамануджан не имел формальной подготовки, его продвинутые математические знания в очень молодом возрасте приводили многих в замешательство.

К 16 годам он смог изучать числа Бернулли, которые он сам разработал, и рассчитал постоянную Эйлера-Маскерони. Перед смертью в молодом возрасте 32 лет Рамануджан успешно собрал почти 4000 различных математических тождеств.

Он приобрел международную известность после того, как выдающийся британский математик Дж. Харди узнал его работу и сравнил его с такими, как Эйлер и Якоби.

Основные сведения[править | править код]

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать. После прохождения курса ребенок сможет:

После прохождения курса ребенок сможет:

  1. В 2-5 раз лучше запоминать тексты, лица, цифры, слова
  2. Научится запоминать на более длительный срок
  3. Увеличится скорость воспоминания нужной информации

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Презентация на тему: » Что такое математика? Что такое математика? Что такое математика? Что такое математика?» — Транскрипт:

1

Что такое математика? Что такое математика? Что такое математика? Что такое математика?

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

2

Слово «математика» произошло от др.- греч. máthēma, что означает изучение, знание, наука, и др.-греч. mathēmatikós, первоначально означающего восприимчивый, успевающий, позднее относящийся к изучению, впоследствии относящийся к математике. В частности, mathēmatik tékhnē, на латыни ars mathematica, означает искусство математики.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

3

Одно из первых определений предмета математики дал Декарт: К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

4

В советское время классическим считалось определение, данное А. Н. Колмогоровым: Математика… наука о количественных отношениях и пространственных формах действительного мира.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

5

Это определение Энгельса; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле. Формулировка Бурбаки: Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм математических структур.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

6

Приведём ещё несколько современных определений. Современная теоретическая («чистая») математика это наука о математических структурах, математических инвариантах различных систем и процессов.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

7

Математика наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

8

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики: Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

9

Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддаётся рационализации и не может быть объективным.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

10

Конец

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Основные темы

Количество

Основной раздел, рассматривающий абстракцию количества — алгебра. Понятие «число» первоначально зародилось из арифметических представлений и относилось к натуральным числам. В дальнейшем оно, с помощью алгебры, было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.

1,2,…{\displaystyle 1,\;2,\;\ldots } Натуральные числа
,1,−1,…{\displaystyle 0,\;1,\;-1,\;\ldots } Целые числа
1,−1,12,23,,12,…{\displaystyle 1,\;-1,\;{\frac {1}{2}},\;{\frac {2}{3}},\;0{,}12,\;\ldots } Рациональные числа
1,−1,12,,12,π,2,…{\displaystyle 1,\;-1,\;{\frac {1}{2}},\;0{,}12,\;\pi ,\;{\sqrt {2}},\;\ldots } Вещественные числа
−1,12,,12,π,3i+2,eiπ3,…{\displaystyle -1,\;{\frac {1}{2}},\;0{,}12,\;\pi ,\;3i+2,\;e^{i\pi /3},\;\ldots } 1,i,j,k,πj−12k,…{\displaystyle 1,\;i,\;j,\;k,\;\pi j-{\frac {1}{2}}k,\;\dots }
Комплексные числа Кватернионы

Числа — Натуральные числа — Целые числа — Рациональные числа — Иррациональные числа — Алгебраические числа — Трансцендентные числа — Вещественные числа — Комплексные числа — Гиперкомплексные числа — Кватернионы — Октонионы — Седенионы — Гиперреальные числа — Сюрреальные числа — p-адические числа — Математические постоянные — Названия чисел — Бесконечность — Базы

Преобразования

Явления преобразований и изменений в самом общем виде рассматривает анализ.

36÷9=4{\displaystyle 36\div 9=4} ∫1Sdμ=μ(S){\displaystyle \int 1_{S}\,d\mu =\mu (S)}
Арифметика Дифференциальное и интегральное исчисление Векторный анализ Анализ
d2dx2y=ddxy+c{\displaystyle {\frac {d^{2}}{dx^{2}}}y={\frac {d}{dx}}y+c}
Дифференциальные уравнения Динамические системы Теория хаоса

Арифметика — Векторный анализ — Анализ — Теория меры — Дифференциальные уравнения — Динамические системы — Теория хаоса

Структуры

Теория множеств — Линейная алгебра — Общая алгебра (включает, в частности, теорию групп, универсальную алгебру, теорию категорий) — Алгебраическая геометрия — Теория чисел — Топология.

Пространственные отношения

Основы пространственных отношений рассматривает геометрия. Тригонометрия рассматривает свойства тригонометрических функций. Изучением геометрических объектов посредством математического анализа занимается дифференциальная геометрия. Свойства пространств, остающихся неизменными при непрерывных деформациях и само явление непрерывности изучает топология.

Геометрия Тригонометрия Дифференциальная геометрия Топология Фракталы Теория меры

Геометрия — Тригонометрия — Алгебраическая геометрия — Топология — Дифференциальная геометрия — Алгебраическая топология — Линейная алгебра — Фракталы — Теория меры.

Дискретная математика

Дискретная математика включает средства исследования объектов, способных принимать только отдельные (дискретные) значения (то есть объектов, не способных изменяться плавно).

∀x(P(x)⇒P(x′)){\displaystyle \forall x(P(x)\Rightarrow P(x’))}
Математическая логика Теория вычислимости Криптография Теория графов

Комбинаторика — Теория множеств — Теория решёток — Математическая логика — Теория вычислимости— Криптография — Теория функциональных систем — Теория графов — Теория алгоритмов — Логические исчисления
— Информатика.

Интересные сведения из истории возникновения математики

Откуда же взялась математика? Куда же уходит корнями история развития математики? Самым первым источником появления простейшей математики ученые считают пальцы на руках и ногах, а также различные части тела. Об этом свидетельствует множество наскальных рисунков, дошедших до нашего времени. Учеными установлено, что 6 тысяч лет назад древние вавилоняне уже использовали простые математические действия: для бытовых нужд, учета скота, подсчета количества урожая, размера прибыли и расходов, при совершении купли или продажи различных товаров. Позже они же первые упоминают о решении математических задач и уравнений повышенной сложности. К самым первым математическим открытиям относят возникновение математических действий, которые известны нам как сложение, вычитание, умножение и деление.

Ученые-историки до сих пор спорят о точной дате появления этой науки и о месте, где впервые она появилась. Конкурентами в этом споре выступают древний Вавилон и Египет. Самые первые подтверждения математической деятельности принадлежат Свазиленду. Там найдены кости бабуинов с нанесенными черточками, которые явно говорят о первых математических операциях, выполненных 40000 лет назад.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

()

А когда же появились дроби? Упоминания о дробях возникли гораздо позже, но уже достоверно известно, что жители древнего Египта совершали операции с дробями, у которых числителем являлась единица.

А вот представление о десятичных дробях появилось всего лишь пять столетий назад, а в Европу попало только через 200 лет после появления.

 Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

 (И)

Невероятные факты, связанные с математикой:

  • Всю математическую науку возможно записать в сто тысяч томов;
  • Центилион — самое большое известное число, содержащее шестьсот нулей;
  • Наименьшее число используется только в астрономии. Названия не имеет. Записывается дробью; после запятой имеет сто миллионов триллионов нулей, а в конце единицу;
  • Самая магическая цифра, которая таит множество суеверий — 666. В Европейской палате все время пустует только одно кресло под номером 666. Во всем мире люди стараются не использовать это число. Такой номер не присваивается телефонным кодам, автобусам,трассам или поездам;
  • В Китае самым суеверным числом считают число 4. При этом, такой номер не присваивается домам, квартирам, нет даже 4 этажа.

Математика очень дружна со всеми существующими науками, видами деятельности и профессиями. Одно мудрое выражение гласит «Математика-язык других наук». Поспорить с этим очень сложно, ведь она является основой для развития таких дисциплин:

  • Химия;
  • Физика;
  • Астрономия;
  • Биология;
  • История;
  • Экономика;
  • География;
  • Информатика;
  • Политология;
  • Музыка;
  • Литература.

Теперь мы можем с уверенностью сказать, что знание математики — залог вашей успешности и развития не только в будущем, а уже сегодня!

Евклид

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Известен: евклидовой геометрии; Евклидов алгоритм

Евклид Александрийский был греческим математиком, которого многие считают основателем геометрии. Euclid’s Elements, сборник из 13 книг, считается одной из самых старых и влиятельных книг по математике.

Хотя геометрия (которая теперь известна как евклидова геометрия) является фокусом в Элементах Евклида, она также имеет всеобъемлющее введение в теорию элементарных чисел. Его работы по оптике также получили широкое признание.

Системный подход Евклида в его работе — начиная с аксиом и затем логически получая сложные результаты, оказал влияние на некоторые из величайших умов последующих поколений. Principia Mathematica Ньютона — прекрасный пример этого.

Обозначения[править | править код]

Основная статья: Математические обозначения

Подробнее см. также: История математических обозначений

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Анри Пуанкаре

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные фактыАнри Пуанкаре Генри Пуанкаре вместе с Мари Кюри на Сольвеевской конференции 1911 года

Известен: проблема с тремя телами; Теория хаоса; Теорема Пуанкаре – Хопфа

По словам Эрика Белла, известного шотландского математика, Анри Пуанкаре был, вероятно, одним из последних универсалистов, поскольку в то время он процветал почти во всех известных областях математики.

В течение своей жизни Пуанкаре внес многочисленные теории в области математической физики, прикладной математики и астрономии. Он сыграл важную роль в разработке теории специальной теории относительности.

Более того, его исключительные работы по преобразованию Лоренца и проблеме трех тел проложили путь математикам, а также астрофизикам к открытиям о нашей планете и космосе. Его теоретические работы даже вдохновили известных художников, таких как Пикассо и Брак, создать художественное движение (кубизм) в 20-м веке.

История

Никто точно не может сказать, как появилась математика. Сведения о ней содержатся в разных письменах у различных народов. Самые древние сведения, дошедшие до наших дней – клинописные таблички.

Найденные артефакты эпохи Вавилона показывают, что даже шесть тысяч лет тому назад люди вели подсчеты домашних расходов, торговых сделок, решали математические задачки. Позже вавилоняне начали решать сложные алгебраические задачки, кубические и квадратные вычисления.

А как появилась математика с дробями, когда это было? Такие сложные действия люди научились вычислять не сразу, однако уже в Древнем Египте умели проводить вычисления с дробями, у которых в числительном была единица. Десятичные дроби появились благодаря самаркандскому математику Д. ибо-Самосуд аль-Каши пятьсот лет назад. Спустя почти два столетия фламандский математик Стивен ввел их в Европе.

Даже сегодня в математике совершаются различные открытия. Это связано с тем, что математика – наука, которая не стоит на месте, а постоянно движется вперед.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Математика в жизни

Ежедневно люди применяют математику и даже не догадываются, что с этой наукой связано много интересного.

Когда-то в Англии жил ученый А. де Муавр. Его заинтересовал факт увеличения продолжительности сна. Ученый заметил, что его сон увеличивается на пятнадцать минут. Как математику, ему стало интересно, к чему это может привести. Ученый подсчитал, когда его сон будет занимать 24 часа. Эта дата выпала на 27 ноября 1754 г. – дату его смерти.

В российских школах число ноль не считается натуральным, а вот в западных – оно относится к множеству натуральных чисел.

Математики всегда пытаются выполнять с цифрами различные действия, даже играя в казино. Оказывается, если сложить все цифры рулетки, то сумма будет 666.

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

В истории много занимательных математических фактов. К примеру, число пи стали использовать еще в шестом веке до нашей эры, квадратные уравнения появились в Индии в VI веке нашей эры. Древнегреческие ученые писали труды, посвященные математике, на десятки томов. Их работы до сих пор используются учеными.

Философия математики[править | править код]

Основная статья: Философия математики

Цели и методыправить | править код

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство , при является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях».

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основанияправить | править код

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подходправить | править код

Основная статья: Теория множеств

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей).
Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизмправить | править код

Основная статья: Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализмправить | править код

Основная статья: Формализм (математика)

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизмправить | править код

Основная статья: Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математикаправить | править код

Основная статья: Конструктивная математика

Конструктивная математика — близкое к интуиционизму течение в математике, изучающее конструктивные построения[прояснить]. Согласно критерию конструктивности — «существовать — значит быть построенным». Критерий конструктивности — более сильное требование, чем критерий непротиворечивости.

Наука в Вавилоне и Египте

В Вавилоне, откуда появилась математика, постоянно разрабатывались исследования, в которых применялись единицы и десятки. Именно вавилонские ученые придумали градусы, разрабатывались системы исчисления. Однако в вавилонской системе не было нуля, из-за чего обозначение некоторых чисел было сложным.

В Египте числа обозначались в виде иероглифов.

До семнадцатого века математика считалась наукой, которая изучает числа, геометрические фигуры, величины. Ее применяли в торговле, астрономии, архитектуре, при проведении земляных работ. И только с восемнадцатого столетия она начала свое бурное развитие.

5 класс

  • Математика 5 класс
    Самостоятельные и контрольные работы

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс
    Арифметика. Геометрия.

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс
    Дидактические материалы

    Авторы:

  • Математика 5 класс
    рабочая тетрадь

    Авторы:

  • Математика 5 класс
    Рабочая тетрадь

    Авторы:

  • Математика 5 класс
    рабочая тетрадь

    Авторы:

  • Математика 5 класс
    сборник задач

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс
    сборник задач и контрольных работ

    Авторы:

  • Математика 5 класс
    рабочая тетрадь

    Авторы:

  • Математика 5-6 класс
    сборник задач

    Авторы:

  • Математика 5 класс

    Авторы:

  • Математика 5 класс
    сборник задач и упражнений

    Авторы:

  • Математика 5 класс
    контрольные работы

    Авторы:

  • Математика 5 класс
    рабочая тетрадь

    Авторы:

  • Математика 5 класс
    текущий итоговый контроль

    Авторы:

  • Математика 5 класс
    дидактические материалы

    Авторы:

  • Математика 5 класс
    тесты и самостоятельные работы

    Авторы:

  • Математика 5 класс
    дидактические материалы

    Авторы:

  • Математика 5 класс
    контрольные работы

    Авторы:

  • Математика 5 класс

    Авторы:

Математика 6 класс

В 6ом классе появляется тема преобразования дробей в строчную запись. Что это значит? Например, дана дробь ?, она будет равна 0,5. ? = 0.25.

Примеры могут составляться в таком стиле: 0.25+0.73+12/31.

Примеры для тренировки:

Задание №1:

Задание №2:

Как появилась математика: основы и история развития науки. роль математики в жизни и интересные факты

Задание №3:

  1. В двух классах в общем было 92 стула. Из первого класса перенесли 16 стульев во второй класс и потом количество их уровнялось. Сколько стульев было в первом и втором классе изначально?

  2. В двух ящиках лежало 240 кг яблок. Из второго ящика в первый переложили 18 кг яблок. После количество яблок в первом и втором ящике уровнялось. Сколько килограмм яблок было изначально в первом и втором ящике.

  3. Автомобилист выехал из города в деревню со скоростью равно 11,5 км/ч. Спустя 2,4 часа оттуда же и в том же направлении выехал автобус со скоростью 46 км/ч. Спустя какое время автобус догонит автомобиль?

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий