Алгебра

Что такое корень уравнения

Корень уравнения – это значение неизвестной составляющей. 4 — это и есть корень уравнения. Корень уравнения — значение переменной, удовлетворяющее условиям уравнения и преобразующее его в равенство при подстановке. Чтобы найти корень уравнения, необходимо определить все возможные значения переменных.

Чтобы ответить на вопрос, что такое корень уравнения, нужно сначала разобраться с самым понятием уравнения. Наверное, не так тяжело догадаться, что уравнением называется равенство двух величин.

Уравнение и его корни: определения, примеры

Значение неизвестной Х может меняться с учетом того, какое значение Y, или наоборот. Чтобы это сделать, нужно решить уравнение. Это делается при помощи математических действий, в результате которых уравнение сокращается до минимума. В итоге, или устанавливается значение одной неизвестной, или определяется взаимная зависимость двух переменных.

Целенаправленное знакомство с уравнениями обычно начинается на уроках математики во 2 классе. Таким образом, уравнение определяется с позиции формы записи.

Приведем примеры самых первых и самых простых уравнений. Начнем с уравнений вида x=8, y=3 и т.п.

В дальнейшем допускают присутствие в записи уравнений трех и большего количества переменных. Проведем некоторые рассуждения, которые нам помогут понять, что такое корень уравнения. Допустим, перед нами находится уравнение с одной буквой (переменной).

На этот момент возникает ряд естественных вопросов: «Любое ли уравнение имеет корень, и сколько корней имеет заданное уравнение»? Пару слов стоит сказать о принятой записи корней уравнения. Например, если корнями уравнения являются числа −1, 2 и 4, то пишут −1, 2, 4 или {−1, 2, 4}. Допустимо также записывать корни уравнения в виде простейших равенств.

https://youtube.com/watch?v=8446c7QwiwA

При этом записанные числа в скобках соответствуют переменным в алфавитном порядке

Наибольшее внимание в школьном курсе математики, алгебры и начал анализа уделяется нахождению корней уравнений с одной переменной. Правила этого процесса мы очень подробно разберем в статье решение уравнений

Уравнение представляет собой равенство двух числовых выражений, в которых присутствует минимум одна неизвестная.

Существует несколько видов уравнений: алгебраическое, параметрическое, функциональное, дифференциальное и трансцендентное. Корень уравнения — КОРЕНЬ, рня, мн. рни, рней, м. Толковый словарь Ожегова.

Дуб глубоко пустил корни в землю. Древесина или вещество этой части растения. КОРЕНЬ — КОРЕНЬ, рн , мн. рни, рней, муж. 1. Подземная часть растения, служащая для укрепления его в почве и всасывания из неё воды и питательных веществ. 1.

Подземная часть растения, посредством которой оно укрепляется в почве и получает из земли воду с растворёнными в ней минеральными веществами. Корни деревьев. По смыслу вычитания, таким значением будет разность чисел 35 минус 7, то есть 28. Или же х = 28.

Значит, в корзине было 28 грибов.

Значение буквы, или значение переменной при котором из уравнения получается верное числовое равенство, называют корнем уравнения. Само уравнение является равенством двух величин, к корню уравнения относят значение неизвестной составляющей.

Таким образом, например, не может иметь корней уравнение X2=–9, связано это с тем, что абсолютно любое значение неизвестной X при возведении в квадрат даст положительное число. Для закрепления. Алгебраические выражения, как и само уравнение, в результате решения должны быть сокращены до минимума. Для этого, применяя определённые математические действия, следует решить уравнение.

Целое уравнение и его корни

1. 2*(x2 + 1)*(x — 1) = 6*x — (x + 7);

2. (x4 — 1)/4 — (x2 + 1)/2 = 3*x2

Выполним над этими уравнениями равносильные преобразования: раскроем скобки, приведем подобные слагаемые. Получим:

1. 2*x3 – 2*x2 + 2*x — 2 = 6x — x — 7

2*x3 – 2*x2 + 2*x — 2 — 6*x + x + 7 = 0

2*x3 — 2*x2 — 3*x + 5 = 0.

2. x4 — 1 — 2*(x2 + 1) = 12*x2

x4 — 1 — 2*x2 — 2 = 12*x2

x4 — 1 — 2*x2 — 2 — 12*x2 = 0

x4 — 14*x2 — 3 = 0.

В результате получили уравнения вида P(x) = 0, где P(x) – многочлен в стандартном виде. Степень этого многочлена будет также являться степенью уравнения.

Степень уравнения

Степенью произвольного уравнения будет называться степень многочлена, полученного из уравнения путем проведения равносильных преобразований. Уравнения первой степени всегда будут приводимы к виду a*x + b = 0, где х — некоторая переменная, а и b – некоторые числа, причем а не должно равняться нулю.

Из этого уравнения получаем выражение для х.

х = -b/a.

Это число (-b/a) называется корнем уравнения. Уравнение первой степени будет иметь один корень. Корнем уравнения P(x) =0 называют любое значение переменной х, такое, что многочлен P(x) обращается в нуль.

Уравнения второй степени всегда можно привести к виду a*x2 + b*x + x = 0, где х – некоторая независимая переменная, а а, b, c – произвольные числа, причем а не равняется нулю. Корни уравнения находятся по формуле x = (-b ± √D)/(2*a), где D = b2 — 4*a*c.

Выражение D (b2 — 4*a*c) называется дискриминантом. В зависимости от того, какое значение имеет дискриминант, квадратное уравнение будет иметь два или один корень либо не иметь корней.

Если дискриминант больше нуля, то уравнение имеет два корня: (x = (-b ± √D)/(2*a)). Если дискриминант равен нулю, то уравнение имеет один корень: (x = (-b/(2*a)). Если дискриминант отрицателен, то уравнение не имеет корней.

Уравнения третей степени можно привести к виду a*x3 + b*x2 + c*x + d = 0. Уравнение четвертой степени можно привести к виду a*x4 + b*x3 + c*x2 + d*x + e = 0.

Любое уравнение n-ой степени имеет не более n корней. Формулы для корней уравнений третьей и четвертой степени известны, но они очень сложны. Для уравнений больших степеней формул корней не существует.

Нужна помощь в учебе?

Предыдущая тема: Решение неравенств методом интервалов: разбираем на конкретном примереСледующая тема:   Уравнения, приводимые к квадратным: биквадратные и рациональные

Следствие уравнения и посторонние корни

Уравнение

F(x)=G(x){\displaystyle F\left(x\right)=G\left(x\right)}

называется следствием уравнения

f(x)=g(x){\displaystyle f\left(x\right)=g\left(x\right)},

если все корни второго уравнения являются корнями первого. Первое уравнение может иметь дополнительные корни, которые для второго уравнения называются посторонними. Посторонние корни могут появиться при преобразованиях, необходимых для нахождения корней уравнений. Для того чтобы их обнаружить, необходимо проверить корень подстановкой в исходное уравнение. Если при подстановке уравнение становится тождеством, то корень настоящий, если нет — посторонний.

Пример

Уравнение 2×2−1=x{\displaystyle {\sqrt {2x^{2}-1}}=x} при возведении обеих частей в квадрат даёт уравнение 2×2−1=x2{\displaystyle 2x^{2}-1=x^{2}}, или x2=1{\displaystyle x^{2}=1}. Оба уравнения являются следствием исходного. Последнее из них легко решить; оно имеет два корня x=1{\displaystyle x=1} и x=−1{\displaystyle x=-1}.

При подстановке первого корня в исходное уравнение образуется тождество 1=1{\displaystyle {\sqrt {1}}=1}. При подстановке другого корня получается неправильное утверждение 1=−1{\displaystyle {\sqrt {1}}=-1}. Таким образом, второй корень нужно отбросить как посторонний.

Как найти корень уравнения

Способы найти корень уравнения — правила вычисления.

Уравнение – математическое выражение, содержащее одну или несколько неизвестных. Решить уравнение – значит найти такие значения аргументов, при которых достигается равенство левой и правой частей выражения (заданных функций). Найденные значения называются корнями уравнения.

В математике выделяют линейные, квадратные и кубические уравнения. Для того чтобы найти корень уравнения определенного типа используются различные методы.

Линейное уравнение

Выражение вида а*х=b называется линейным уравнением. В нем а – коэффициент при переменной, b – свободный член. При его решении может быть три случая, в которых:

  • а  0. Корень в этом случае вычисляется по формуле: x=b/a. Например, дано уравнение x+3=9-2*x. Выражения с «Х» переносятся в одну сторону, а свободные члены – в другую: х+2*х=9-3, или 3*х=6. Тогда х=6/3, х=2.
  • а=0, b=0. Уравнение примет вид 0*х=0. Это равенство будет верным при любом значении «Х». Значит, корнем уравнения будет любое действительное число.
  • а=0, b  0. Получится выражение 0*х=b, для которого не существует корней.

Квадратное уравнение

Уравнение вида  называется квадратным (а  0). «А» и «B» называются коэффициентами, а «С» – свободным членом. Количество корней зависит от значения дискриминанта, который вычисляется по формуле . В том случае, если:

D0 – существует два корня, определяемые следующим образом:  Например, дано уравнение 3*х2-2*х-5=0. Дискриминант D=4-4*3*(-5)=64. Будет два корня.

Кубическое уравнение

Выражение вида  называется кубическим уравнением. Оно может обладать несколькими корнями, для вычисления которых нужно:

  • Найти один из корней, который представляет собой делитель свободного члена «d» путем подстановки всех возможных делителей, пока левая часть выражения не станет равной нулю.
  • Разделить исходное уравнение на найденный корень, в результате чего выражение будет приведено к виду квадратного.
  • Найти корни полученного уравнения. Например, дано уравнение . Делители свободного члена 12 – ±2, ±3, ±4, ±6, ±12. Левая часть принимает значение, равное 0 при х=2. Значит 2 – первый корень. Затем нужно разделить исходное выражение на (х-2). Получится квадратное уравнение . Его корнями будут числа..

Другие способы

Помимо алгебраического вычисления необходимых значений можно воспользоваться:

  • Бесплатным онлайн-калькулятором (allcalc.ru).
  • Графическим способом, когда строится график функции, точки пересечения которого с осью «Х» будут корнями уравнения.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Формулы, которые используют для нахождения корней квадратного уравнения, и содержащие дискриминант

В общем случае, когда «Д» положительное число, не равное нулю, нужно использовать такую формулу:

х1,2 = (-в ± √Д) / (2 * а).

Алгебра

При равенстве «Д» нулю корень уравнения — это единственное число. Просто потому что квадратный корень из нуля равен нулю. А значит, прибавлять и вычитать нужно будет ноль. От этого число не изменится. Поэтому формулу корня уравнения можно записать без упоминания «Д»:

х = (-в) / (2 * а).

При отрицательном значении дискриминанта извлечь из него квадратный корень не представляется возможным. Поэтому корней у такого уравнения не будет.

Замечание. Это верно для курса школьной программы, в которой не изучаются комплексные числа. Когда они вводятся, то получается, что и в этой ситуации ответов будет два.

Решение уравнений методом подбора корня

Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!

Пример. Докажите, что корнями ур-ния

х3 – 2х2 – х + 2 = 0

являются только числа (– 1), 1 и 2.

Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:

(– 1)3 – 2(– 1)2 – (– 1) + 2 = 0

–1 – 2 + 1 + 2 = 0

0 = 0

При х = 1 получаем:

13 – 2•12 – 1 + 2 = 0

1 – 2 – 1 + 2 = 0

0 = 0

Наконец, рассмотрим случай, когда х = 2

23 – 2•22 – 2 + 2 = 0

8 – 8 – 2 + 2 = 0

0 = 0

Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.

Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.

Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:

аxn + a1xn–1 + … + аn–1х + аn = 0

Числа а, а1, а2,…аnи называют коэффициентами уравнений.

Например, для уравнения

5х4 – 7х3 + 9х2 – х + 12 = 0

коэффициенты равны

а = 5

а1 = – 7

а2 = 9

а3 = – 1

а4 = + 12

Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии

х3 + 2х – 15 = 0

нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи

х3 + 0х2 + 2х – 15 = 0

где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.

Для обозначения первого коэффициента а может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».

Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:

Алгебра

Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами

аxn + a1xn–1 + … + аn–1х + аn = 0

Тогда можно подставить туда число m и получить верное равенство:

аmn + a1mn–1 + … + аn–1m + аn = 0

Поделим обе его части на m и получим

аmn–1 + a1mn–2 + … + аn–1 + аn/m = 0

Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа аmn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.

Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.

Пример. Найдите целые корни уравнения

2х4 – х3 – 9х2 + 4х + 4 = 0

Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):

2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0

2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0

2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0

Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.

Ответ: 1; 2; (– 2).

Пример. Решите ур-ние

0,5х3 + 0,5х + 5 = 0

Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:

0,5х3 + 0,5х + 5 = 0

(0,5х3 + 0,5х + 5)•2 = 0•2

х3 + х + 10 = 0

Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:

(– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0

Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает

Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.

Ответ: – 2

Ещё быстрее можно узнать, является ли единица корнем уравнения.

Алгебра

Докажем это. Подставим в ур-ние

аxn + a1xn–1 + … + аn–1х + аn = 0

значение х = 1. Так как единица в любой степени равна самой единице, то получим:

а1n + a11n–1 + … + аn–11 + аn = 0

а + a1 + … + аn–1 + аn = 0

Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.

Пример. Укажите хотя бы 1 корень ур-ния

499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0

Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:

499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0

Следовательно, единица является его корнем.

Ответ: 1.

Только усвоенная информация становится знанием. В этом вам помогут онлайн-курсы

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры. Количество просмотров этой статьи: 44 376.

Категории: Математика

English:Solve Square Root Problems

Español:resolver operaciones con raíces cuadradas

Italiano:Risolvere le Operazioni con le Radici Quadrate

Français:résoudre des problèmes contenant des racines carrées

Bahasa Indonesia:Menyelesaikan Soal Akar Kuadrat

Português:Resolver Problemas Envolvendo Raiz Quadrada

Nederlands:Vierkantswortels oplossen

العربية:حل مسائل الجذور التربيعية

Печать

Графический метод решения уравнений

Любое ур-ние с одной переменной можно представить в виде равенства

у(х) = g(x)

где у(х) и g(x) – некоторые функции от аргумента х.

Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.

Пример. Решите графически уравнение

х3 – х2 – 1 = 0

Решение. Строить график уравнения х3 – х2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х2 – 1) вправо:

х3 – х2 – 1 = 0

х3 = х2 + 1

Построим графики у = х3 и у = х2 + 1 (второй можно получить переносом параболы у = х2 на единицу вверх):

Алгебра

Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.

Ответ: х ≈ 1,46557

Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.

Пример. Определите количество корней уравнений

а)х3 – х – 3 = 0

б) х3 – 2х + 0,5 = 0

Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:

а) х3 = х + 3

б) х3 = 2х – 0,5

Построим графики функций у = х3, у = х + 3 и у = 2х – 0,5:

Алгебра

Алгебра

Видно, что прямая у = х + 3 пересекает график у = х3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.

Ответ: а) один корень; б) три корня.

Онлайн-курсы по математике помогут подготовиться к ОГЭ наилучшим образом

Функция

Именно такие ограничения и называются функцией. Функцией зовется зависимость одной неизвестной от другой или других неизвестных. Например, в выражении:

х+у=12 – от выбранного значения х зависит значение у и наоборот.

В классическом виде функция имеет вид у(х)=в . В качестве независимого параметра принимается число х, в качестве зависимого – у. Это значит, что число х принимается равным любому числу, а у высчитывается в соответствии с этим равенством. Если х уже задан, то у нельзя принимать любым числом, из-за строгого ограничения функции у числа у появляется единственно определенное значение.

Число у зовется функцией, а число х аргументом. При этом у функции может быть множество аргументов, но у аргумента может быть только одна функция. Например, в функции у=x+z+n – 3 аргумента. Такие функции не используются в школьной программе, но нельзя забывать, что они существуют.

Функции часто изображаются в виде графиков. На плоскости можно отобразить зависимость функции лишь от одного аргумента. Но в пространстве можно отобразить изменение функции в зависимости от двух аргументов.

Существую типовые функции, поведение которых на графике изучено. Каждая из таких функций имеет свое название. Например:

  • Линейная функция
  • Квадратичная функция
  • Степенная функция
  • Логарифмическая функция и так далее

Большую часть типовых функций ученики изучают в математике старших классов.

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения x = f(x)

Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными».

Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения.

Про корни говорят, что они удовлетворяют данному уравнению.

Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет.

Равносильные уравнения

Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней.

Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому.

Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения.

Третье важное свойство задаётся теоремой: если функции f,g{\displaystyle f,g} заданы над областью целостности, то уравнение

f(x)⋅g(x)={\displaystyle f(x)\cdot g(x)=0}

эквивалентно совокупности уравнений

f(x)=,g(x)={\displaystyle f(x)=0,\qquad g(x)=0}.

Это означает, что все корни первого уравнения являются корнями одного из двух других уравнений, и позволяет находить корни первого уравнения в два приёма, решая каждый раз более простые уравнения.

Основные свойства

С алгебраическими выражениями, входящими в уравнения, можно выполнять операции, которые не меняют его корней, в частности:

  1. в любой части уравнения можно раскрыть скобки;
  2. в любой части уравнения можно привести подобные слагаемые;
  3. любой член уравнения можно перенести из одной части в другую, заменив его знак на противоположный;
  4. к обеим частям уравнения можно прибавить одно и то же выражение;
  5. из обеих частей уравнения можно вычесть одно и то же выражение;
  6. обе части уравнения можно умножать или делить на одно и то же число, отличное от нуля.

Уравнения, которые являются результатом этих операций, являются эквивалентными начальному уравнению. Однако для свойств 4 и 5 существует ограничение: в случае прибавления к обеим частям уравнения одного и того же выражения (или в случае вычитания из обеих частей уравнения одного и того же выражения), содержащего неизвестное и теряющего смысл при неизвестном, принимающем значения корней данного уравнения, получится уравнение, неэквивалентное исходному (начальному). Но если к обеим частям уравнения прибавить одно и то же выражение (или из обеих частей уравнения вычесть одно и то же выражение), содержащее неизвестное и теряющее смысл лишь при значениях неизвестного, не являющихся корнями данного уравнения, то получится уравнение, эквивалентное начальному.

Умножение или деление обеих частей уравнения на выражение, содержащее неизвестное, может привести, соответственно, к появлению посторонних корней или к потере корней.

Возведение обеих частей уравнения в квадрат может привести к появлению посторонних корней.

Неизвестное

Чтобы говорить об уравнениях, нужно вспомнить, что такое неизвестное. Под неизвестным понимается буквенное выражение, которое в общем случае может принимать абсолютно любое значение.

Неизвестные могут перемножаться с числом или друг с другом. Таким образом, получается классический одночлен. Например, выражение 3 а*в является одночленом.

Если одночлены складываются, вычитаются или делятся друг на друга, получается многочлен. Многочлен, приравненный к какому-то числу, называется тождеством.

После того, как многочлен приравняли к какому-то числу, превратив его в тождество, появляются некоторые ограничения. Этих ограничений может быть недостаточно для того, чтобы точно определить значения неизвестных, но они есть.

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий