Электронно-вычислительная машина

Описание профессии

В общероссийском классификаторе профессии «оператор электронно-вычислительных и вычислительных машин» присвоен код 16199. Она относится ко 2–4(5) ступени квалификации рабочих специальностей. Если нанимателю нужен сотрудник 2–3 разряда, то он может не предъявлять требований к наличию стажа, а образования достаточно среднего при условии хорошего владения компьютером.

Кстати, профессия называется «оператор ЭВ и ВМ» из-за того, что понятие «вычислительная машина» довольно широкое. Устройство, производящее вычисления, может быть не только цифровым, но и аналоговым или комбинированным, поэтому в нормативной базе используется именно такая формулировка, хотя на практике должность уже давно носит название «оператор ПК».

История создания ЭВМ

  • Первые гражданские ЭВМ Z1 и Z2 были созданы в конце 30-х годов в Германии.
  • 1941 год — Конрад Цузе создал вычислительную машину Z3, которая имела все свойства современного компьютера.
  • 1942 год — в Университете штата Айова Джон Атанасов и его аспирант Клиффорд Берри создали (а точнее — разработали и начали монтировать) первую в США электронную цифровую вычислительную машину. Хотя эта машина так и не была завершена в связи с уходом Атанасова на военную службу, она, как пишут историки, оказала большое влияние на Джона Мокли, который, спустя четыре года, создал первую ЭВМ ЭНИАК.
  • В начале 1943 года успешные испытания прошла первая американская вычислительная машина Марк I, предназначенная для выполнения сложных баллистических расчётов для ВМС США.
  • В конце 1943 года заработала английская вычислительная машина специального назначения «Колосс». Машина работала над расшифровкой секретных кодов Третьего Рейха.
  • В 1944 году Конрад Цузе разработал ещё более быструю вычислительную машину — Z4.
  • 1946 год стал годом создания первой американской гражданской универсальной электронной цифровой вычислительной машины ЭНИАК.
  • В 1950 году в Киеве под руководством академика С. А. Лебедева был создан первый советский сверхвычислитель МЭСМ.
  • С 1962 года ЭВМ применяются на космических кораблях Союз и Л-1 (облёт Луны).
  • 1967 стал годом, посвящённым формальным методам проектирования электронных вычислительных машин под руководством Глушкова.
  • 30 октября 1967 года в СССР произведена первая в мире полностью автоматическая стыковка двух космических аппаратов (беспилотных кораблей «Союз» под названиями «Космос-186» и «Космос-188»
  • В 1969 году ЭВМ ракеты Н-1 обрабатывал данные с более чем с 13 тысяч датчиков ракеты.

Обязанности на работе

Оператор электронно-вычислительных машин на рабочем месте выполняет такие функции:

  • подготовка компьютера и другой оргтехники к работе;
  • обработка и расшифровка информации и ввод ее в ПК через разные каналы связи;
  • передача данных по локальным сетям или электронной почтой;
  • систематизация, форматирование, запись сведений на носители;
  • актуализация баз данных;
  • набор текста, оцифровывание, распечатка и тиражирование информации;
  • поиск нужных сведений в Интернете;
  • построение графиков и таблиц.

Специалист по работе с ЭВМ должен знать:

  • принцип действия персонального компьютера и технику безопасности при его использовании;
  • способы обработки и ввода информации, в том числе мультимедийной;
  • основы работы с самыми распространенными программами (Microsoft Office, OpenOffice, 1С, Outlook);
  • как создаются таблицы, диаграммы, слайд-шоу и презентации;
  • азы настройки ПК под внешние устройства (принтер, сканер, проектор, ксерокс);
  • технику поиска информации в Интернете;
  • алгоритмы размещения информации в базах данных и на веб-сайтах.

Конкретные обязанности указываются в должностной инструкции и зависят от места работы. Чаще всего операторы ЭВМ трудятся в таких сферах:

  • Медицина. В учреждениях здравоохранения требуется систематизировать амбулаторные сведения о пациентах, вести учет поступления медикаментов, готовить письма в различные государственные и лечебные заведения.
  • Бухгалтерия и банковский сектор. В крупных компаниях специально выделенный сотрудник занимается вводом и упорядочиванием финансовой информации, формированием списков и ведомостей.
  • Торговля. В магазинах и на складах нужны специалисты, которые ведут учет первичной документации, готовят ведомости, накладные, расходные ордера, вносят новую продукцию в базу данных и кодируют ее.
  • Средства массовой информации. Набор текстов для последующей верстки, подготовка рекламных вставок в теле- и радиопередачи.

Также оператор электронно-вычислительных машин может трудиться в государственных органах и сфере обслуживания. Секретарь руководителя муниципальных организаций и бизнес-структур сейчас просто обязан владеть компьютером хотя бы на среднем уровне. Многие работодатели, остро нуждающиеся в кадрах, обучают новичков на курсах за счет компании.

История

Подробнее по этой теме см. История вычислительной техники.

Антикитерский механизм, ок. 100 год до н. э.

Астролябия (1208 год, Персия)

Логарифмическая линейка

Примечание: для сравнения указаны отдельные этапы развития цифровых вычислительных устройств.

Одним из самых древних аналоговых приборов считается антикитерский механизм — механическое устройство, обнаруженное в 1902 году на затонувшем древнем судне недалеко от греческого острова Антикитера. Датируется приблизительно 100 годом до н. э. (возможно, до 150 года до н. э.). Хранится в Национальном археологическом музее в Афинах.

Астрологи и астрономы пользовались аналоговым прибором астролябия с IV века до нашей эры вплоть до XIX века нашей эры. Этот прибор использовался для определения положения звезд на небе и вычисления продолжительности дня и ночи. Современным потомком астролябии является планисфера — подвижная карта звёздного неба, используемая в учебных целях.

  • 1622 год, английский математик-любитель Уильям Отред разработал первый вариант логарифмической линейки, устройство, которое можно считать первым аналоговым вычислительным прибором.
  • 1642 год — Блез Паскаль изобрёл «паскалину».
  • 1674 год — создана машина Морленда
  • 1814 год — учёный Дж. Герман (Англия) создал планиметр — аналоговое устройство, которое предназначено для нахождения площади, ограниченной замкнутой кривой на плоскости.
  • 1878 год — польский математик Абданк-Абаканович разработал теорию интерграфа — некоего аналогового интегратора — устройства, позволяющего получить интеграл от произвольной функции, изображённой на плоском графике.
  • 1904 год — российский инженер Алексей Крылов изобрел первую механическую вычислительную машину, решающую дифференциальные уравнения (применялась при проектировании кораблей).[источник не указан 2131 день]
  • 1912 год — создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту российского учёного Алексея Крылова.[источник не указан 2131 день]
  • 1930 год — Ванневар Буш (США) создал механическую интегрирующую машину, применявшуюся при расчёте траектории стрельбы корабельных орудий. (в 1942 году — создана её электромеханическая версия).
  • 1935 год — выпуск первой советской электродинамической счётно-аналитической машины САМ (модель Т-1). Разработаны механический интегратор и электрический расчётный стол для определения стационарных режимов энергетических систем.[источник не указан 3653 дня]
  • 1942—1944 годы, США — операционный усилитель постоянного тока, имеющий достаточно высокий коэффициент усиления, что дало возможность конструировать аналоговые компьютеры без движущихся частей, на постоянном токе.
  • 1945—1946 годы, СССР — под руководством Льва Гутенмахера изобретены первые электронные аналоговые машины с повторением решения.
  • 1949 год, СССР — изобретён ряд АВМ на постоянном токе, что положило начало развитию аналоговой вычислительной техники в СССР.
  • 1958 год — Фрэнк Розенблатт разработал первый нейрокомпьютер-перцептрон Марк-1, который не является полностью аналоговым, а скорее относится к гибридным системам.
  • 1960-е годы, аналоговые компьютеры являлись повседневным инструментом ученых для решения множества специфических задач в различных областях науки. В СССР расцвет электронных аналоговых вычислительных машин с их серийным выпуском пришёлся на 1960—1970-е годы.

Конструктивные особенности

Перфолента

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Примерами аналоговых вычислителей, от простого к сложному, являются: номограмма, логарифмическая линейка, астролябия, осциллограф, телевизор, аналоговый звуковой процессор, автопилот, мозг. [источник не указан 2848 дней]

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

Система счисления

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме. Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

Тем не менее, переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н. П. Брусенцовым).

Под руководством академика Хетагурова Я. А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём.

В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера — любой компьютер может эмулировать любой другой.

Хранение программ и данных

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Именно на этапе начала массового производства ЭВМ разрыв между нашей страной и Западом начал резко нарастать.

Купленная у «Фиата» платформа «Жигулей» устаревала десятки лет, а быстро прогрессирующие компьютеры — раз в несколько лет. Покупать за рубежом платформы можно было до бесконечности — они все равно постоянно отставали от последних западных. Время, нужное на внедрение в производство западных клонов, оказалось равно времени разработки на Западе новых машин.

Уже в конце 1970-х появились персональные компьютеры Apple (Apple I и II), а позднее — и других фирм. Сходные конструкции предлагались и в СССР — тот же «Микро-80», но реакция руководства страны на такие предложения была довольно сдержанной. Заместитель министра радиопромышленности СССР Николай Горшков в 1980 году сказал авторам «Микро»: «Ребята, хватит заниматься ерундой. Персонального компьютера не может быть. Могут быть персональный автомобиль, персональная пенсия, персональная дача. Вы вообще знаете, что такое ЭВМ? ЭВМ — это 100 квадратных метров площади, 25 человек обслуживающего персонала и 30 литров спирта ежемесячно!» Этими словами он не только вошел в историю, но и продемонстрировал ряд причин отставания советской электронной отрасли.

Чтобы успевать в технологической гонке с Западом, надо все время бежать просто для того, чтобы оставаться на том же самом месте. А чтобы догонять, надо бежать вдвое быстрее. Чиновники в Министерстве радиопромышленности просто не понимали, что в отрасли происходит быстрый прогресс, а молодые конструкторы никак не могли повлиять на мнение чиновников. Впрочем, некоторые клоны решений Apple и IBM даже успели запустить в производство в СССР, но они тут же устаревали, а после распада СССР компьютерная отрасль пришла в полное небрежение. Российский бизнес в 1990-х был готов вкладывать деньги в торговлю компьютерами, но никак не в такое капиталоемкое дело, как разработка и производство, например, новых процессоров.

В то же время в последние годы стали появляться объективные предпосылки к серьезному улучшению ситуации в отечественной радиоэлектронике. Сейчас, как и когда-то в советское время, во многих отраслях не приходится рассчитывать на поставки из-за рубежа. С другой стороны, наконец-то резко замедлился темп развития кремниевой электроники по всему миру. В таких условиях, даже без вложения крупных средств, вполне возможно создание систем, по уровню приближающихся к продукции лидеров мировой микроэлектроники. Скажем, отрабатываемый сейчас восьмиядерный «Эльбрус-8СВ» использует 28-нанометровый технологический процесс. Это значит, что разрешение оборудования, делающего полупроводниковые кристаллы для таких процессоров, равно 28 миллиардным метра, и примерно таким же по размеру выходит и минимальный возможный размер полупроводниковых элементов процессора.

Основные компоненты компьютера

Любой персональный компьютер имеет системный блок, и устройства ввода-вывода: монитор и клавиатуру. Другие устройства: мышь, принтер, сканер и другие — удобны, но необязательны. Работать можно и без них, хотя без мыши даже самый опытный пользователь будет испытывать затруднения

Компьютер — это тот самый невзрачный светло-серый, который слегка гудит, и от которого отходит множество проводов. Правильнее называть этот ящик системным блоком. Называть его процессором неправильно и неграмотно.

Даже те, кто работает с компьютерами не первый год, зачастую ошибочно называют системный блок процессором. Ничего плохого в этом нет, и от неверного названия Ваш компьютер не станет работать хуже. Но будет проще, если при обращении к специалистам (в компьютерный магазин, в сервис-центр) Вы назовете вещи своими именами.

Теперь заглянем внутрь системного блока и посмотрим, что же там есть. А есть там все необходимое для функционирования компьютера (то есть я хочу сказать, что компьютер может отлично работать без монитора и остальных внешних устройств, только Вы никак не сможете управлять компьютером в таком случае). Правда, клавиатура в момент включения компьютера все равно должна быть присоединена. Такой вот парадокс IBM PC — монитора может и не быть, но клавиатура быть обязана.

Итак, если внимательно посмотреть внутрь системного блока, то обычно там можно найти такие штуки.

  • Блок питания. Обычно продается вместе с корпусом, но его можно выбирать и отдельно.
  • Материнская плата. Основа всего. Именно в материнскую плату вставляются почти все остальные составляющие. Кроме того, она служит и проводником между ними. На материнской плате располагаются также различные микросхемы, управляющие другими устройствами. В том числе такие важные, как, например, BIOS.
  • Процессор. «Мозг» компьютера. Именно благодаря процессору компьютер «думает», то есть выполняет элементарные действия по сложению, вычитанию и выполнению других команд.
  • Видеокарта. Предназначена для подготовки изображения и вывода его на монитор.
  • Оперативная память. Она используется для хранения программ и данных, когда компьютер включен. При выключении компьютера, все содержимое оперативной памяти теряется.
  • Жесткий диск. Предназначен для долговременного хранения информации. Как правило, жесткий диск может хранить более чем в 200 раз больше данных, чем оперативная память (соотношение зависит от параметров конкретного компьютера и может быть различным). При выключении компьютера данные на жестком диске сохраняются. Именно на жесткий диск записываются все данные и устанавливаются все программы.
  • Дисковод гибких дисков (для дискет). Предназначенный для чтения и записи информации на гибкие диски (дискеты). Дисководы сейчас устанавливаются не во все компьютеры, а скоро они вообще уйдут в историю. В настоящее время применяют только дискеты диаметром 3,5″ (так называемые «трехдюймовые»). Более древние «пятидюймовые» уже очень давно вышли из употребления.
  • Дисковод для компакт-дисков. Сейчас он есть в любом домашнем компьютере (в офисных может и отсутствовать за ненадобностью). Существуют разные виды таких дисководов: CD-ROM, CD-RW, DVD и др.
  • Звуковая плата. Предназначенная для проигрывания музыки. Без звуковой платы компьютер может издавать только лишь мерзкий писк встроенным динамиком (он называется PC Speaker). В последнее время звуковая плата обычно встроена прямо в материнскую плату в виде крохотной микросхемки. Но любители очень качественного звука часто приобретают отдельную звуковую плату, когда качество звука встроенной не устраивает.
  • Также в системном блоке могут быть установлены и другие устройства, например, плата для захвата видеоизображения, ТВ- или FM-тюнер, контроллеры сканера, SCSI-устройств и многое-многое другое.

Все они весьма специфичны и есть не во всех компьютерах. Кроме того, там есть вентиляторы (в современном компьютере их должно быть не меньше трех), шнуры питания, динамик PC Speaker, шлейфы для передачи информации.

Второе поколение

В 1948 году был создан первый транзистор. Разработкой занимались физики Джон Бардин и Уильям Шокли, а также экспериментатор Уолтер Браттейн. Первые представители данного поколения ЭВМ, которые были созданы на основе транзисторов в конце 50-х годов, а к середине 60-х стали появляться компьютеры, имеющие значительно меньшие габариты.

Главной отличительной чертой транзистора является то, что он способен работать как сорок ламп, но при этом скорость у него выше. Кроме того, эти устройства требовали гораздо меньше энергии и практически не грелись. Параллельно с этим увеличивался и объем памяти для хранения информации. Благодаря стараниям ученых компьютеры получили быстродействие, равное миллиону операций в секунду.

Американским представителем является устройство ЭВМ «Атлас». Советский Союз может быть представлен машиной БЭСМ-6.

Электронно-вычислительная машина

Все улучшения, произошедшие с появлением транзисторов, позволили значительно расширить сферы применения ЭВМ. Активно стали создаваться языки программирования для различных целей. Примером могут выступать фортран и кобол.

Однако по-прежнему машины страдали от нехватки памяти. Для экономии пространства стали разрабатывать операционные системы, которые позволяли более рационально распределять ресурсы.

Если тот же ЭНИАК применялся для создания термоядерной бомбы (советская создавалась без цифровых компьютеров), то «эмки» разошлись по научным учреждениям, которые не могли себе позволить огромных специально построенных машинных залов.

Кроме научных расчетов, Брук предложил их использовать как управляющие машины сложных индустриальных и энергетических установок, оперировать которыми вручную было чрезвычайно трудно — слишком много для этого надо было учитывать параметров. Например,  электростанций, химических реакторов и тому подобного. Как бы сейчас сказали, он впервые предложил внедрение промышленных компьютеров.

Если М-1 и М-2 были построены в одном экземпляре и потеряли практическое значение уже в 1960-х, то линия ЭВМ М-3, с рядом модификаций, была востребована до конца 1960-х годов и оказалась весьма долгоживущей.

Первое поколение

Ламповые ЭВМ стали первыми вычислительными машинами, выпуск которых начался в начале 50-х годов прошлого столетия. Примерно в то время люди начале массово узнавать, что такое ЭВМ.

В Советском Союзе представителем таких машин стал МЭСМ. Руководил разработкой данного компьютера Лебедев. Вскоре на его основе был разработан новый представитель того поколения ЭВМ — БЭСМ. Для серийного производства данная машина получила некоторые улучшения. Она была названа БЭСМ-2.

Электронно-вычислительная машина

В Соединенных Штатах о том, что такое ЭВМ, знали также многие. Представителем первого поколения электронных вычислительных машин стал «Эдвак». Однако он значительно уступал по параметрам отечественному компьютеру. Связано это было с тем, что БЭСМ-2 применял новые принципы построения. Советская машина могла совершать около десяти тысяч операций в секунду.

Структурно первое поколения ЭВМ было очень схожим с машиной фон Неймана. Конечно, параметры были во много раз хуже, чем у современных самых малофункциональных представителей компьютерной техники. Программы для ЭВМ первого поколения составлялись при помощи машинного кода.

Представители таких машин отличались огромными габаритами и высоким потреблением энергии. Цена машины являлась неподъемной для простых пользователей. Кроме этого, управлять ими мог только специально обученный оператор ЭВМ, так как все программы были сложны для понимания. Поэтому использовались они лишь учеными для каких-либо научно-технических задач.

Вскоре появились первые языки программирования: символическое кодирование и автокоды.

Ну и где же российские Apple и IBM?

Несмотря на довольно бодрый старт и создание в СССР первых в истории компьютеров на полупроводниковой базе, поддерживать столь же высокий темп развития компьютерной техники в нашей стране не удалось. Проблемы начались после появления микропроцессоров — базовые элементы первых компьютеров с начала 70-х стало возможно размещать на одной кремниевой микросхеме (до того надо было собирать процессор из многих микросхем). Здесь уже нельзя было вручную собирать элементную базу — слишком уж мелкими деталями приходилось оперировать. Требовались радиоэлектронные фабрики, со временем — и вакуумные камеры для выращивания нужных кремниевых кристаллов. В то же самое время сменилась парадигма технологической гонки СССР со странами Запада. Сталинскому Советскому Союзу конца 40-х — начала 50-х никто не продал бы ЭНИАК: машину, на которой рассчитывают параметры водородной бомбы, не экспортируют. А за пределами США во времена Брука и Рамеева работающих цифровых ЭВМ вообще не было. Поэтому, чтобы иметь хоть какие-то компьютеры, их приходилось делать самим.

Брежневская эпоха резко изменила ситуацию. СССР вышел на масштабный экспорт нефти, и на высшем уровне многие технические проблемы захотели решить методом покупки технологии и оборудования на Западе — это было если не дешевле, то точно проще, чем создавать такие технологии внутри страны. Так появились ВАЗ, КАМАЗ и первые ЭВМ на базе клонов западных микропроцессоров. Оборудование для выпускавших их заводов тоже завозилось из-за рубежа.

Лучшие ссузы и курсы для обучения

Учреждения среднего профессионального образования, в которых можно получить специальность «оператор ЭВМ», есть почти в каждом городе страны, в последнее десятилетие многие из них стали структурными подразделениями университетов или заключили партнерские соглашения с вузами. Благодаря такому подходу выпускники после получения диплома СПО на льготных условиях могут поступать в высшие учебные заведения для дальнейшего обучения.

Специалистов с квалификацией «оператор электронно-вычислительных и вычислительных машин» выпускают несколько десятков ссузов, например:

  • Технологический колледж № 21 (г. Москва) расположен в Восточном административном округе столицы. При учреждении действует центр содействия трудоустройству выпускников.
  • Техникум радиоэлектроники и информационных технологий им. А. В. Воскресенского (г. Ижевск) выпускает операторов ЭВМ, специалистов направления «компьютерные системы и комплексы». По этим же профилям организовываются электронные дистанционные курсы.
  • Прибалтийский судостроительный техникум (г. Калининград) готовит кадры для предприятий и организаций области. Ссуз заключил партнерские соглашения с рядом предприятий региона, которые высоко ценят уровень преподавания в учебном заведении и охотно берут на работу его выпускников.
  • Уфимский многопрофильный профессиональный колледж на коммерческой и бюджетной основе очно готовит квалифицированных специалистов для работы на ПК. Также здесь можно получить диплом по прикладной информатике или обеспечению безопасности автоматизированных систем.
  • Колледж Метростроя (г. Санкт-Петербург) выпускает специалистов по направлению «оператор ЭВ и ВМ», которые могут работать с информацией, знают мультимедиа, компьютерные сети и графику.

Многие осваивают необходимые навыки работы с вычислительными машинами, не поступая в ссуз, а оканчивая курсы оператора ЭВМ. В России есть множество учебных центров, где можно получить требующиеся для трудоустройства знания:

  • Академия АйТи открыла филиалы почти в двух десятках российских городов. На курсах для пользователей ПК все желающие могут освоить самые распространенные программы, такие как Microsoft Word, Excel, PowerPoint, Access за 4–6 тысяч рублей. Партнеры обучения – крупные IT-компании, такие как Huawei, Cisco, Oracle и др.
  • УЦ «IT-курс» поможет получить навыки работы с рядом популярных приложений на уровне продвинутого пользователя, обучит быстрой печати, информационной безопасности и делопроизводству на ПК. Здесь же есть программы подготовки секретарей.
  • Международная компьютерная академия «ШАГ» работает с 1999 года и имеет 55 филиалов в 18 странах мира. Ее деятельность поддерживается Autodesk, Cisco и Microsoft. Здесь могут учиться дети и взрослые, выпускники получают официальный сертификат.

Обучение в хороших техникумах и колледжах, а также на курсах отличается от вузовского меньшим количеством теории и большим упором на практику. Многие, хорошо зарекомендовав себя на стажировках, остаются работать в фирмах-партнерах обучения.

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые элементы. Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Основные виды ЭВМ

По размеру аппаратной части могут быть выделены различные классы ЭВМ.

Советская микро-ЭВМ ДВК-2. Сверху вниз: алфавитно-цифровой дисплей (терминал) 15ИЭ-00-013, блок логики дисплея, блок сопряжения, клавиатура (дисководы размещаются снаружи и на фото не показаны).

  • Мини-ЭВМ — малая ЭВМ, что имеет небольшие размеры и стоимость. Появившись в конце 1960-х годов, мини-ЭВМ имели широкие возможности в решении задач различных классов.
  • Микро-ЭВМ — ЭВМ малых размеров, созданная на базе микропроцессора. Ранее различали микро-ЭВМ следующих видов: встроенные и персональные, настольные и портативные, профессиональные и бытовые. Термин ПЭВМ (персональная ЭВМ) вытеснен синонимом «персональный компьютер» (сокращённо: ПК). В настоящее время, персональные компьютеры не относятся к микрокомпьютерам.
  • Большие ЭВМ (мейнфреймы)
  • Супер ЭВМ (суперкомпьютеры)

Четвертое поколение

Значительные успехи в разработках ЭВМ привели к появлению больших интегральных схем. Представляли они собой кристалл, который включал в себя тысячи электронных элементов. Благодаря низкой стоимости и неплохим параметрам ЭВМ на БИС получили огромную популярность.

В апреле 1976 года два друга разработали первый в мире персональный компьютер. Известные многим Стив Джобс и Стив Возняк трудились вечерами в гараже над созданием ПК, который впоследствии получил название Appl и обрел огромную популярность. Уже через год была создана одноименная компания, которая занялась выпуском персональных компьютеров.

Электронно-вычислительная машина

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка ). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом ( junction transistor ). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м2. PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!

Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах ( «Раздан-2», «Минск — 2», «М-220» и «Днепр» ) находились еще в стадии разработки.