Геометрия

Определение окружности

Существует несколько определений этой геометрической фигуры.

  • Это замкнутая кривая, состоящая из точек, которые располагаются на одинаковом расстоянии от заданной точки.
  • Это кривая, состоящая из точек А и В, являющихся концами отрезка, и всех точек, из которых А и В видны под прямым углом. При этом отрезок АВ – диаметр.
  • Для того же отрезка АВ эта кривая включает все точки С, такие, что отношение АС/ВС неизменно и не равняется 1.
  • Это кривая, состоящая из точек, для которых справедливо следующее: если сложить квадраты расстояний от одной точки до двух данных других точек А и В, получится постоянное число, большее 1/2 соединяющего А и В отрезка. Это определение выводится из теоремы Пифагора.

Геометрия
Определение окружности

Эллипс

Нет общей формулы для вычисления длины границы эллипса через большие и малые полуоси эллипса, которая бы использовала только элементарные функции. Однако, есть приближённые формулы, в которых фигурируют эти параметры. Одно из приближений получено Эйлером (1773); периметр эллипса, записанного каноническим уравнением:

x2a2+y2b2=1,{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1,}

приблизительно равен

Cellipse∼π2(a2+b2){\displaystyle C_{\rm {ellipse}}\sim \pi {\sqrt {2(a^{2}+b^{2})}}}

Нижние и верхние границы периметра канонического эллипса при a≥b{\displaystyle a\geq b} .

2πb⩽C⩽2πa,{\displaystyle 2\pi b\leqslant C\leqslant 2\pi a,}
π(a+b)⩽C⩽4(a+b),{\displaystyle \pi (a+b)\leqslant C\leqslant 4(a+b),}
4a2+b2⩽C⩽π2(a2+b2).{\displaystyle 4{\sqrt {a^{2}+b^{2}}}\leqslant C\leqslant \pi {\sqrt {2(a^{2}+b^{2})}}.}

Здесь верхняя граница 2πa{\displaystyle 2\pi a} — длина описанной концентирчной окружности, проходящего через концевые точки больших осей эллипса, а нижняя граница 4a2+b2{\displaystyle 4{\sqrt {a^{2}+b^{2}}}} — периметр вписанного ромба, вершины которого — концы больших и малых осей.

Периметр эллипса может быть описана с помощью полного эллиптического интеграла второго рода. Более точно:

Cellipse=4a∫π21−e2sin2⁡θ dθ,{\displaystyle C_{\rm {ellipse}}=4a\int _{0}^{\pi /2}{\sqrt {1-e^{2}\sin ^{2}\theta }}\ d\theta ,}

где a{\displaystyle a} — длина большой полуоси и e{\displaystyle e} — эксцентриситет 1−b2a2.{\displaystyle {\sqrt {1-b^{2}/a^{2}}}.}

Число пи

Без числа π решить рассматриваемую задачу не получится. Число π впервые и было найдено как отношение длины окружности к ее диаметру. Это сделали еще древние вавилоняне, египтяне и индийцы. Нашли они его довольно точно – их результаты отличались от известного сейчас значения π не больше, чем на 1%. Постоянную приближали такими дробями как 25/8, 256/81, 339/108.

Далее значение этой постоянной считали не только с позиции геометрии, но и с точки зрения математического анализа через суммы рядов. Обозначение этой константы греческой буквой π впервые использовал Уильям Джонс в 1706 году, а популярно оно стало после работ Эйлера.

Сейчас известно, что эта постоянная представляет собой бесконечную непериодическую десятичную дробь, она иррациональна, то есть ее нельзя представить в виде отношения двух целых чисел. С помощью вычислений на суперкомпьютерах в 2011 году узнали 10-триллионный знак константы.

Если вам необходима длина окружности, онлайн-калькулятор поможет в этом. Таких калькуляторов существует множество, в них нужно только ввести радиус или диаметр. У некоторых из них есть обе эти опции, другие вычисляют результат только через R. Некоторые калькуляторы могут рассчитать искомую величину с разной точностью, нужно указать число знаков после запятой. Также с помощью онлайн-калькуляторов можно посчитать площадь круга.

Такие калькуляторы легко найти любым поисковиком. Также существуют мобильные приложения, которые помогут решить задачу, как найти длину окружности.

Площадь сектора

, что сектором называется часть круга, образованная двумя его радиусами. Если же в круге проведена хорда, то она отсекает от него сегмент:

Геометрия

Проведем из центра окружности 360 радиусов, причем угол между соседними радиусами будет ровно 1°. В результате мы разобьем окружность на 360 одинаковых секторов, площадь каждого такого сектора будет в 360 раз меньше площади круга:

Теперь рассмотрим сектор, который образован дугой величиной в α градусов. Если α – целое число, то такой сектор можно составить из α секторов, каждый из которых составляет по 1°. Тогда площадь сектора круга будет определяться формулой:

Геометрия

Задание. Круговой сектор опирается на дугу в 45°, а его радиус составляет 40. Определите площадь этого сектора.

Решение. Используем выведенную формулу:

Геометрия

Ответ: 12,5π.

Задание. Площадь сектора равна 200 см2. Он опирается на дугу в 30°. Каков радиус кругового сектора? При решении примите π равным 3,14.

Решение. Из формулы площади сектора выразим радиус окружности:

Геометрия

Ответ: ≈ 27,6 см.

Задание. На сторонах произвольного прямоугольника построены полукруги:

Геометрия

Докажите, что площадь полукруга, опирающегося на полуокружность, равна сумме площадей полукругов, опирающихся на катеты.

Решение. Полукруг представляет собой сектор с центральным углом α = 180°, поэтому его площадь может быть рассчитана так:

Геометрия

Заметим, что эти стороны являются диаметрами полукругов. Обозначим как D1 диаметр полукруга, опирающегося на гипотенузу, а два других диаметра как D2 и D3. Тогда можно выполнить преобразования:

Геометрия

Именно это равенство нам и требовалось доказать.

Теперь рассмотрим более сложную задачу, в которой необходимо определить площадь сегмента.

Задание. В окружности радиусом 20 проведена хорда длиной 12. Она разбивает окружность на два круговых сегмента. Найдите площадь каждого из них. При расчете примите π ≈3,14.

Геометрия

Чтобы найти площадь меньшего сегмента, можно вычесть из площади кругового сектора площадь треугольника АВО. Для нахождения обоих площадей в любом случае надо сначала определить величину угла ∠АОВ. Это можно сделать, применив теорему косинусов:

Геометрия

Далее надо рассчитать площадь ∆АВС. Это можно сделать с помощью разных формул, мы используем формулу с синусом угла. Для этого предварительно вычислим синус ∠АОВ, применив основное тригонометрическое тождество:

Геометрия

Осталось вычесть из площади сектора площадь ∆АВС, чтобы найти площадь кругового сегмента S1:

Геометрия

Примечание. В подобных задачах ответы и промежуточные ответы могут немного отличаться в зависимости от того, с какой точностью берется число π, вычисляется ∠АОВ и его синус, и как именно округляются промежуточные результаты и т. п. Более точные расчеты показывают, что в описанной задаче величины S1 и S2 примерно равны:

Шаги

Метод 1 из 2:

Через диаметр

  1. 1

    Запишите формулу для вычисления длины окружности через диаметр. Формула имеет вид: C = πd, где C — длина окружности, d — диаметр окружности. То есть длина окружности равна произведению диаметра на число пи (π примерно равно 3,14).
    X
    Источник информации

  2. 2

    Подставьте данные вам значения в формулу и найдите длину окружности.
    X
    Источник информации

    • Пример: у вас есть круглый бассейн диаметром 8 м, и вы хотите поставить вокруг него забор на расстоянии 6 м. Чтобы рассчитать длину забора, сначала найдите диаметр окружности, то есть диаметр бассейна плюс расстояние до забора с обеих сторон. В нашем примере диаметр равен 8 + 6 + 6 = 20 м. Подставьте это значение в формулу.
    • C = πd
    • C = π x 20
    • C = 62,8 м

Метод 2 из 2:

Через радиус

  1. 1

    Запишите формулу для вычисления длины окружности через радиус. Радиус равен половине диаметра, а диаметр, соответственно, — двум радиусам (2r). Тогда формула имеет вид: C = 2πr, где C — длина окружности, r — радиус окружности. То есть длина окружности равна удвоенному произведению радиуса на число пи (π примерно равно 3,14).
    X
    Источник информации

  2. 2

    Подставьте данные вам значения в формулу и найдите длину окружности. Например, вы вырезаете полоски декоративной бумаги, чтобы красиво обернуть вокруг кексов при подаче на стол. Радиус кекса равен 5 см. Подставьте это значение в формулу.
    X
    Источник информации

    • C = 2πr
    • C = 2π x 5
    • C = 10π
    • C = 31,4 см.

Советы

  • Можете купить инженерный или научный калькулятор, в котором уже есть кнопка π. Так вам придется нажимать меньше кнопок, к тому же ответ будет более точным, поскольку встроенная кнопка π имеет более точное значение, чем 3,14.
  • Чтобы вычислить окружность, зная диаметр, просто умножьте диаметр на число пи.
  • Радиус всегда равен половине диаметра.
  • При решении задачи от вас могут потребовать писать не значок π, а его числовое значение — 3,14 (или с большим количеством знаков после запятой). Уточняйте требования у учителя.
  • Если вы не можете решить задачу, попросите помощи у друзей, членов семьи или учителя. Они всегда помогут!
  • Не забывайте перепроверять вычисления, так как одна ошибка приведет к неправильному результату.
  • Не торопитесь. Помните старую пословицу — семь раз отмерь, один раз отрежь.

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 173 человек(а). Количество просмотров этой статьи: 700 054.

Категории: Геометрия

English:Calculate the Circumference of a Circle

Français:calculer la circonférence d’un cercle

Italiano:Calcolare la Circonferenza di un Cerchio

Español:calcular la circunferencia

Deutsch:Einen Kreisumfang berechnen

Português:Calcular a Circunferência de um Círculo

Nederlands:De omtrek van een cirkel berekenen

中文:计算圆的周长

Bahasa Indonesia:Menghitung Keliling Lingkaran

Čeština:Jak vypočítat obvod kruhu

日本語:円の円周を計算する

ไทย:คำนวณเส้นรอบวงของวงกลม

हिन्दी:गोलाकार चीजों की परिधी ज्ञात करें

العربية:حساب محيط دائرة

Tiếng Việt:Tính Chu vi Hình tròn

한국어:원의 원주 구하는 법

Türkçe:Bir Dairenin Çevresi Nasıl Hesaplanır

فارسی:محیط یک دایره را محاسبه کنیم

Печать

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями. Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости

Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Основные определения и свойства

Фигура Рисунок Определения и свойства
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

      Определение 1. Площадью круга называют , к которому стремятся , вписанных в круг, при неограниченном возрастании числа сторон.

      Определение 2. Длиной окружности называют , к которому стремятся , вписанных в круг, при неограниченном возрастании числа сторон.

      Замечание 1. Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

      Определение 3. Числом π (пи) называют число, равное площади круга радиуса 1.

      Замечание 2. Число π является , т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

      Число π является , то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Длина дуги

Иногда требуется вычислить не длину всей окружности, а только лишь длину ее части, то есть дуги.

Геометрия

Напомним, что дуги имеют такую характеристику, как , которая равна величине центрального угла, на который дуга опирается. Оказывается, что длина дуги окружности и ее градусная мера связаны. Для начала попытаемся найти длину дуги величиной в 1°. Напомним, что вся окружность составляет 360°. Значит, ее можно разбить на 360 маленьких дуг по 1°. Так как все эти дуги одинаковы, то длина каждой из них будет в 360 раз меньше длины все окружности:

Теперь предположим, что нам надо найти длину дуги с градусной мерой α, причем α – это целое число. Тогда мы можем разбить эту дугу на α маленьких дуг по 1°, и ее длина будет равна сумме их длин:

Геометрия

Задание. На окружности с радиусом 6 см отмечена дуга величиной в 30°. Найдите ее длину.

Решение. Просто подставляем в формулу числа:

Геометрия

Ответ: π см.

Задание. На железнодорожном пути есть закругленный участок радиусом 5 км, а его длина составляет 400 м. Какова градусная мера этого закругления? Дайте приближенный ответ без использования числа π.

Решение. Выведем из формулы выражение для угла α:

Геометрия

Ответ: 4,6°.

Задание. Длина дуги окружности равна 20 см, ей соответствует центральный угол в 60°. Каков радиус окружности? Ответ не округляйте.

Решение. Теперь из формулы выражаем радиус окружности:

Геометрия

Ответ: 60/π см.

Задание. Точки А и В разбивают окружность на две дуги. Длина меньшей дуги равна 63, а опирается она на центральный угол в 28°. Какова длина большей дуги?

Решение. Сначала найдем радиус окружности:

Геометрия

Вся окружность составляет 360°. Если градусная мера меньшей дуги – это 28°, то у большей дуги градусная мера (обозначим ее как β) определяется так:

Геометрия

Ответ: 747 см.

Задание. Какой должна быть градусная мера дуги, чтобы ее длина в точности совпадала с длиной радиуса?

Решение. Запишем формулу:

Геометрия

Ответ: ≈ 57,32°.

Площадь круга

, что кругом называется часть плоскости, ограниченная окружностью. Для нахождения площади круга можно использовать все тот же метод многоугольников, который мы применили для нахождения длины окружности и вычисления числа π.

Возьмем окружность и впишем в нее n-угольник. В свою очередь в него впишем окружность.

Геометрия

Выпишем изученные нами ранее две формулы:

Здесь r и R – радиусы вписанной и описанной окружности соответственно, Р – периметр многоугольника, Sмног. – площадь многоугольника. С ростом n периметр многоугольника приближается к длине описанной окружности, что можно записать в таком виде

Геометрия

Одновременно с этим и площадь многоугольника приближается к площади круга (имеется ввиду больший, то есть описанный круг), что позволяет вычислить ее:

Геометрия

Задание. Определите площадь круга, ограниченного окружностью 10 см.

Решение. В этой задаче надо просто подставить числа в формулу:

Геометрия

Ответ: 100π см2.

Задание. Площадь круглого бассейна составляет 10 м2. Каков его радиус? При расчете примите число π равным 3,14.

Решение. Здесь надо из формулы площади получить выражение для вычисления радиуса:

Геометрия

Ответ: ≈ 1,8 м.

Задание. Во сколько раз увеличится площадь круга, если его радиус увеличится в 2 раза?

Решение. Пусть радиус исходного круга – это R. Тогда его площадь рассчитывается так:

Геометрия

Ответ: в 4 раза.

Примечание. В общем случае увеличение радиуса круга в k раз приводит к увеличению его площади в k2 раз.

Задание. Ваня и Петя решили купить пиццу. Сначала Ваня заметил пиццу диаметром 30 см, цена которой – 300 рублей. Но тут же Петя обнаружил на витрине такую же пиццу диаметром 40 см, которая стоила уже 450 рублей, и предложил ее купить. Ваня сказал, что этот невыгодная покупка, ведь радиус у второй пиццы больше только на треть, а цена больше уже наполовину. Прав ли Ваня?

Решение. Масса пиццы пропорциональна их площади. У второй пиццы радиус больше в 4/3 раза (так как 40/30 = 4/3), значит, площадь у нее больше в

Получается, что вторая пицца больше в 1,78 раза, а цена у нее выше только в 1,5 раза. То есть выгодней купить именно вторую, то есть большую пиццу.

Ответ: Ваня не прав, лучше купить пиццу диаметром 40 см.

Примечание. В этой задаче можно было посчитать площадь каждой пиццы, а потом поделить их стоимость на площадь и получить цену 1 см2 пиццы в каждом варианте. Ответ бы при этом не изменился.

Задание. Завод изготавливает круглые столы радиусом 1,5 метра. Их поверхность надо покрывать лаком, причем на каждый 1 м2 поверхности необходимо тратить 20 г лака. Лак закупается раз в месяц, и в течение ближайшего месяца завод должен изготовить 5000 столов. Сколько лака должен закупить завод на ближайший месяц?

Решение. Считаем площадь поверхности каждого стола:

Геометрия

Ответ: 706,5 кг.

Площадь кольца и других сложных фигур

Если какая-либо фигура образована с помощью нескольких окружностей, то найти ее площадь можно, представив ее в виде суммы площадей нескольких более простых фигур. В качестве простейшего примера можно привести кольцо. По сути оно представляет собой круг, в котором есть круговое отверстие:

Геометрия

Если обозначить наружный радиус кольца буквой R, а радиус отверстия буквой r, то площадь кольца можно найти, вычтя из площади большего круга площадь отверстия:

Геометрия

Задание. Внешний радиус кольца составляет 20 см, а радиус отверстия в нем равен 15 см. Определите площадь кольца.

Решение. Подставляем числа в формулу:

Геометрия

Ответ: 175π.

Задание. Есть диск радиусом 1 метр. Необходимо вырезать в нем отверстие так, чтобы масса диска уменьшилась в два раза. Какой радиус должен быть у отверстия?

Решение. Можно считать, что масса диска пропорциональна его площади, поэтому нам надо, чтобы площадь диска уменьшилась вдвое. Начальная площадь диска определяется так:

Площадь кольца должна быть вдвое меньше, то есть она будет составлять π/2. Если радиус отверстия мы обозначим как r, то можно составить уравнение:

Геометрия

Ответ: ≈ 70,7 см.

В прямоугольной плите с габаритами 180 и 60 см сделано 27 отверстий диаметром 10 см. Вычислите площадь этой плиты. Считайте, что π ≈ 3,1416, и округлите ответ до целых.

Геометрия

Решение. Надо найти площадь плиты без учета отверстий, а потом вычесть из нее площадь всех отверстий. Площадь плиты равна произведению ее сторон

Геометрия

Ответ: ≈ 8679 см2.

Задание. Из вершин квадрата со стороной а проведены дуги радиусом а/2. В результате получили следующую фигуру:

Геометрия

Найдите заштрихованную площадь.

Решение. Площадь заштрихованной области может быть получена, если из площади квадрата мы вычтем площади 4 секторов. Площадь квадрата рассчитывается так:

Геометрия

Задание. В квадрате, сторона которого обозначается буквой а, из вершин провели дуги, чей радиус совпадает со стороной квадрата. В результате в центре квадрата получили следующую фигуру:

Геометрия

Определите, какую долю квадрата занимает эта центральная фигура. Ответ дайте в процентах и округлите его до десятых.

Решение. Задача решается в несколько действий, причем нам потребуется составить формулы для вычисления площадей вспомогательных фигур. Сначала найдем площадь маленького треугольника с «кривыми» сторонами, для чего используем такое построение:

Геометрия

Площадь, которую мы пытаемся найти, обозначена здесь как S1. Ее можно получить, просто вычтя из площади квадрата (она составляет а2) площади двух секторов и площадь треугольника. Треугольник на рисунке – равносторонний, ведь и сторона квадрата, и радиусы окружностей равны величине а. Тогда каждый его угол составляет 60°, и его площадь можно найти так:

Геометрия

Также мы можем найти центральные углы обоих секторов. Так как углы в квадраты составляют 90°, а в равностороннем треугольнике 60°, то эти углы окажутся равными 90° – 60° = 30°. Тогда площадь сектора вычисляется по формуле:

Геометрия

На следующем шаге вычислим площадь другой фигуры:

Геометрия

Попытаемся выразить величину S2. Для этого из площади квадрата надо вычесть площадь сектора, у которого центральный угол составляет 90°. Найдем площадь этого сектора:

Геометрия

Здесь мы ищем площадь S3

Обратите внимание, что ее можно выразить через уже найденные нами величины S1 и S2:

Геометрия

Мы составили выражения для всех необходимых нам вспомогательных фигур. Теперь вернемся к исходному рисунке и отметим на нем эти вспомогательные фигуры:

Геометрия

Итак, мы составили выражение для вычисления площади центральной фигуры. По условию надо указать, сколько процентов она составляет от площади всего квадрата. Для ответа на этот вопрос поделим площадь фигуры на площадь квадрата и умножив это отношение на 100%:

Геометрия

Ответ: 31,5%.

В рамках этого урока мы узнали, как вычислять длину окружности и дуги, площади круга, сектора, сегмента, кольца и других фигур, одна или несколько сторон которых представляют собой дуги окружности. Эти навыки могут пригодиться и в реальной жизни, так как именно от площади многих предметов часто зависит потребность в краске, лаке, клее и т. п.