Виды, устройство и принцип работы дифференциала

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, то оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 году. В болиде McLaren MP4/13 команды «Макларен» при повороте гонщик мог притормозить внутреннее колесо рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений водителя. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Виды самоблокирующихся дифференциалов

Дифференциалы, у которых блокирование происходит в автоматическом режиме, называются самоблокирующимися. В них, при определенных условиях происходит самостоятельная блокировка, без какого-либо участия водителя. Точно также он и разблокируется.

Видео: Кардан Главная передача Дифференциал

Самый простой самоблокирующийся дифференциал – дисковый, имеющий в своей конструкции дополнительный элемент – пакет фрикционных дисков, одна часть которого жестко соединена с чашкой дифференциала, а вторая – с одной из осей. При этом диски прижаты друг к другу.

Действует такая блокировка очень просто: при прямолинейном движении машины чашка и полуось вращаются с одной скоростью, а вместе с ними и фрикционный пакет.

В случае повышения угловой скорости на одной из полуосей, она начинает вращаться быстрее чашки. При этом одна часть фрикционного пакета (закрепленная на оси) ускоряется относительно второй. А поскольку они прижаты, то между ними возникает сила трения, которая и препятствует повышению угловой скорости, соответственно крутящий момент на колесе с большим сопротивлением повышается.

Вискомуфта в качестве межосевого дифференциала

Примерно так же действует и вязкостная муфта, она же вискомуфта, которая сейчас является достаточно распространенным способом заблокировать дифференциал в автоматическом режиме. Но из-за больших габаритных размеров ее в качестве межколесной блокировки не используют. Муфта устанавливается только на межосном дифференциале, как вспомогательное устройство, а в некоторых случаях она полностью его заменяет.

Конструкция этой муфты такая: имеется герметичный корпус, с помещенным в нее пакетом дисков, одна половина которого жестко связана с ведущим валом (от которого подается вращения) а вторая – с ведомым.

Вискомуфта в разобраном состоянии

Все пространство между дисками заполнено дилатантной жидкостью, особенность которой заключается в повышаемой вязкости при перемешивании.

Действует вискомуфта примерно также же, как и дисковая блокировка. Пока валы вращаются с одной скоростью, перемешивание жидкости, расположенной между дисками, не происходит. Но как только появляется разница в скоростях вращения, диски начинают мешать жидкость из-за чего она становиться более вязкой. В результате повышения вязкости жидкости, которая при большой разнице скоростей может стать практически твердой, выравнивается угловая скорость на валах.

Существует также электронная блокировка дифференциала, которая используется на межколесном дифференциале автомобиля. Причем в качестве основного рабочего элемента в ней выступает антиблокировочная система тормозов.

Такая блокировка имеет свое обозначение – противопробуксовочная система, суть работы которой сводится к тому, что в случае увеличения угловой скорости на одном ведущем колесе, тормозная система притормаживает его, тем самым повышая крутящий момент на другом колесе.

Виды дифференциалов

Дифференциалы отличают по месту установки, виду зубчатой передачи и по принципу блокировки.

По месту установки

По расположению их делят на межколесные и межосевые. Межколесные устанавливаются в картере моста автомобиля и перераспределяют крутящий момент между полуосями колес. Межосевые устанавливаются в раздаточной коробке и перераспределяют крутящий момент между осями полноприводного автомобиля.

По виду зубчатой передачи

По типу конструкции и виду зубчатой передачи отличают конические, цилиндрические и червячные дифференциалы. Конические более распространены как межколесные дифференциалы, цилиндрические — как межосевые, а червячные более универсальные и используются во всех конструкциях.

По принципу блокировки

Дифференциалы могут блокироваться принудительно или автоматически. С полной принудительной блокировкой используются на внедорожниках и блокируются по команде водителя причем только во время полной остановки автомобиля. Блокирование происходит с помощью кулачковой муфты, которая может иметь разные типы привода (механический, электронный, гидравлический, пневматический).

Это помогает преодолеть особенно сложные участки покрытия. Но при выезде на покрытие с нормальным сцепление такую блокировку нужно отключать, иначе можно вывести из строя систему привода!

Дифференциалы с автоматической блокировкой называют еще самоблокирующимися и они могут иметь 4 вида конструкции.

Дисковый самоблокирующийся дифференциал

К обычной конструкции дифференциала добавлены пакеты фрикционных дисков. Одни закреплены на корпусе дифференциала, другие — на полуоси. Когда одна из полуосей начинает вращаться быстрее, это вращение замедляется силой трения между пакетами дисков. Прижимная сила фрикционов может быть как постоянной, так и регулируемой.

Червячный самоблокирующийся дифференциал

Такой тип дифференциалов блокируется благодаря свойству червячных передач заклинивать при достижении сильной разницы крутящих моментов. При этом блокировка всегда будет частичной. За такими дифференциалами закрепились названия компаний, которые их создали и выпускают — Torsen (сокращенно от Torque sensitive — чувствительные к крутящему моменту) и Quaife. Плюсы этой конструкции — в простоте и отсутствии электроники. Минусы — в дороговизне, сложности ремонта и обслуживании.

Электронно блокирующийся дифференциал

Электронная блокировка дифференциала применяется в антипробуксовочных система TCS (Traction Control System). В таком случае колесо, которое слишком быстро вращается, просто замедляется с помощью деталей тормозной системы. В результате часть крутящего момента перераспределяется на колесо с лучшим сцеплением.

Вискомуфта или вязкостная муфта

Такой дифференциал использует свойства жидкости. В конструкции используются дополнительные перфорированные диски, закрепленные на дифференциале и полуосях, но находящиеся в герметичном корпусе с силиконовой жидкостью. Когда полуось начинает вращаться с отличной скоростью, ее диски начинают перемешивать силиконовую жидкость и она становится гуще, блокируя дифференциал. Сейчас такие варианты используются редко, потому что они слишком большие, перегреваются и реагируют с опозданием.

Схема работы

Для чёткого понимания сути следует понять, как работает на автомобилях дифференциал.

Поскольку самым актуальным вариантом для легковых автомобилей выступает именно конический межколёсный ДФЦ, принцип работы системы стоит рассмотреть на его примере. Это позволит понять, как устроен и как функционирует автомобильный дифференциал в различных эксплуатационных условиях:

  • при прямолинейном движении;
  • в повороте;
  • при пробуксовке.

Каждую ситуацию стоит рассмотреть отдельно.

  1. Прямолинейное движение. Когда авто движется прямолинейно, нагрузки между колёсами распределяются равномерно. Они движутся с одинаковыми показателями угловой скорости. Расположенные в корпусе ДФЦ сателлиты не осуществляют вращения вокруг своей оси. Крутящий момент передаётся на полуоси с помощью неподвижного зубчатого зацепления от ведомой шестерни главной передачи.
  2. Поворот. Здесь речь идёт уже о несколько ином принципе работы автомобильного дифференциала. В этой ситуации происходит распределение нагрузок и сил сопротивления определённым образом. У внутренних колёс с меньшим радиусом поворота воздействующее сопротивление обладает большей силой в сравнении с наружными колёсами. Поскольку нагрузка возрастает, это заставляет снижать их скорость вращения. При этом наружное колесо перемещается по большему радиусу, а потому угловая скорость увеличивается. Это необходимо для плавного поворота без явных пробуксовок. То есть ДФЦ задаёт колёсам разную угловую скорость. Когда полуось внутреннего колеса вращается с меньшей скоростью, это заставляет двигаться сателлиты. Они с помощью конической передачи повышают скорость вращения уже наружной покрышки. При этом крутящий момент, который идёт со стороны главной передачи, не меняется.
  3. Пробуксовка. Даже если автомобиль движется прямолинейно, но в условиях бездорожья или скользкой дороги, появляются различные нагрузки, включая пробуксовки. Когда буксует одно колесо, оно теряет сцепление с поверхностью дорожного полотна. Параллельно второе колесо нагружается сильнее и его скорость вращения снижается. Это напоминает поворот по схеме движения. Только в этой ситуации машине наносится вред, поскольку пробуксовывающее колесо потенциально может взять на себя весь крутящий момент от дифференциала, а нагруженное прекратит своё вращение. Это заставит машину остановиться. Чтобы решить такую проблему, используются системы курсовой устойчивости, а также автоматическая и ручная блокировка межосевых дифференциалов, что актуально для внедорожных авто.

Виды, устройство и принцип работы дифференциала

Вопрос блокировки вообще заслуживает отдельного внимания, поскольку без неё могут проявляться всевозможные недостатки классической конструкции ДФЦ.

Зачем он нужен

Для начала нужно разобраться, что же такое дифференциалы в автомобилях. Не все знают, но в машинах колёса вращаются с несколько разной скоростью. Это наиболее становится заметным при входе в повороты. При таком манёвре каждое колесо преодолевает различное расстояние. Причём внутренние шины проходят меньшую дистанцию, чем внешние.

Это вызывает необходимость колёсам, которые преодолевают меньшую дистанцию, проехать одинаковое расстояние с внешними колёсами, но при меньшей скорости. То есть, когда автомобиль поворачивает влево, именно левые шины крутятся медленнее, а правые быстрее. И наоборот.

Не стоит забывать и о разнице в преодолеваемой дистанции между передними и задними колёсами.

Если это машина с моноприводом (передний или задний), здесь особой роли не играет разница скорости вращения между передними и задними покрышками. Они не связаны друг с другом и осуществляют своё вращение независимо.

Но при этом ведущие колёса всегда между собой связаны. Их вращение задаёт двигатель и трансмиссия. Причём им нужно приводить в движение оба колеса, но чтобы их скорость вращения была разной. И тут возникает закономерный вопрос касательно того, как это возможно, если двигатель только один. Именно здесь становится ясно, зачем машине нужен этот дифференциал. Чтобы оба ведущих колеса могли вращаться с разной скоростью.

При отсутствии ДФЦ даже поворот под небольшим углом становился бы целой проблемой, поскольку оба колеса вращались бы с одинаковой скоростью. Во время манёвра одно из них скользило или буксовало. Постоянные повороты в таком режиме быстро выводят из строя автомобильную ось.

Как вы понимаете, дифференциал действительно выполняет очень важную задачу, поскольку обеспечивает возможность комфортно и безопасно передвигаться по дорогам, легко входить в повороты и совершать развороты на ограниченном пространстве.

Оценка погрешности формул при помощи применения дифференциала

Измерительные инструменты в принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной абсолютной погрешностью, или, короче, предельной погрешностью – положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной относительной погрешностью называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f ‘(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Замена приращений дифференциалами

Если f ‘(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f ‘(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x2, то Δу = (x + Δх)2 ─ x2= 2xΔх + Δх2, а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх2 и dy = 6Δх, которые эквивалентны вследствие Δх2→0, при х=0 величины Δу = Δх2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х2, так что dV = 3×2Δх = 3∙102∙0/01 = 3 (см3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см3. Полное вычисление дало бы ΔV =10,013 ─ 103 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см3.

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Конструкция, принцип работы дифференциала

Дифференциалы, используемые на авто, делаются на основе обычного редуктора планетарного типа. Основными его составными компонентами являются:

  • корпус, он же — чашка (выполняет роль ведущего элемента);
  • сателлиты;
  • ведомые шестеренки;

Видео: Как работает дифференциал / How Differential Steering Works (на русском)

https://youtube.com/watch?v=qbcwdSSq5h4

Эта конструкция может использовать разные виды зубчатых передач:

  1. Цилиндрические.
  2. Конические.
  3. Червячные;

Видео: Дифференциал, обзор конструкции, принцип действия

Редуктор состоит из двух шестерён (малой ведущей и большой ведомой). Часто ведомую из-за ее размера называют еще зубчатым колесом. Вот к ней и крепиться чашка при помощи болтового соединения.  Внутри чашки сделаны оси для крепления сателлитов. Количество их может варьироваться в зависимости от значения крутящего момента. На легковых авто, где усилия не особо высокие, устанавливается по два сателлита, на внедорожниках же их количество может составлять 4 штуки.

Сателлиты находятся в постоянном зацеплении с правой и левой ведомыми шестернями (вторые получаются зажатыми между первыми). Ведомые шестеренки закрепляются посредством шлицевого соединения на полуосях (в переднеприводных авто они соединены с приводными валами).

Количество зубьев на ведомых шестернях может быть как одинаковым (симметричный дифференциал), так и разным (ассиметричный). Первый тип обеспечивает распределение вращения по полуосям (приводным валам) в равном соотношении, а у второго это выполняется в строго определенных значениях.

Из-за этих особенностей симметричный тип используется в качестве межколесного, а ассиметричный – межосевого дифференциалов.

Работает планетарный узел так: во время прямолинейного движения оба колеса ведущей оси получают одинаковое сопротивление от дорожного полотна. Вращение, получаемое от коробки передач передается на ведомое зубчатое колесо редуктора, а вместе с ним и крутиться чашка дифференциала с размещенными в ней сателлитными осями. Поскольку сопротивление одинаково, то сателлиты осуществляют передачу крутящего момента на ведомые шестеренки в одинаковых соотношениях, то есть скорость вращения их, а вместе с ними и полуосей, равна. При этом сателлиты лишь передают вращение, сами же они остаются неподвижными относительно своих осей.

При вхождении в поворот, колеса начинают двигаться по разным радиусам. При этом, идущее по внутреннему радиусу получает большее сопротивление, чем внешнее. Это сопротивление обеспечивает замедление вращения ведомой шестеренки, из-за чего сателлиты начинают крутиться на осях. В результате начала движения сателлитов, скорость вращения полуоси наружного колеса возрастает, то есть происходит изменение угловых скоростей полуосей (приводных валов). Примечательно, что общая скорость вращения обеих полуосей соответствует скорости вращение зубчатого колеса редуктора, но увеличенной вдвое. При этом крутящий момент от разницы угловых скоростей не меняется, и он разделяется на ведущие колеса равномерно.

В результате такой работы узла при прохождении поворотов удается избежать появления пробуксовки и увеличения нагрузки на элементы трансмиссии.

Устройство механической коробки передач

Устройство механической КПП

Конструктивно механическая коробка передач состоит из следующих элементов:

  • ведущий или первичный вал;
  • ведомый или вторичный вал;
  • промежуточный вал (для 3-х вальной МКПП);
  • шестерни первичного и вторичного валов;
  • механизм выбора передач;
  • муфты синхронизаторов (синхронизаторы);
  • картер;
  • главная передача;
  • .

При этом устройство и принцип работы двухвальной и трехвальной трансмиссии отличаются друг от друга.

Двухвальная коробка передач: устройство и принцип работы

Схема двухвальной МКПП

Этот тип коробки является наиболее распространенным. через муфту сцепления передается на первичный вал. В зависимости от конструкции конкретной коробки передач часть шестерней на первичном и вторичном валах жестко закреплены на них, а часть свободно вращаются. Также на каждом валу расположен минимум один синхронизатор. Шестерни первичного и вторичного валов находятся в постоянном зацеплении друг с другом. Понять, какие из них зафиксированы, а какие вращаются, очень просто: шестерни возле синхронизаторов всегда вращаются на валу.

Шестерня главной передачи жестко закреплена на ведомом валу. Крутящий момент от вторичного вала к колесам транспортного средства передают . Последний обеспечивает вращение колес с разной угловой скоростью.

Механизм выбора передач в двухвальной КПП расположен в корпусе коробки и состоит из вилок и штоков, перемещающих . Механизм оснащен защитой от одновременного включения двух передач.

Принцип работы двухвальной трансмиссии следующий:

  1. В нейтральном положении рычага переключения передач крутящий момента от двигателя не передается на ведущие колеса, шестерни на валах свободно прокручиваются.
  2. При перемещении рычага водитель перемещает муфту синхронизатора соответствующей вилкой через систему тросиков или тяг.
  3. Муфта синхронизирует угловые скорости соответствующей шестерни и вала, на котором расположен синхронизатор.
  4. Муфта синхронизатора входит в зацепление с шестерней и крутящий момент начинает передаваться с первичного вала на вторичныый.
  5. Происходит передача крутящего момента от двигателя на ведущие колеса с заданным передаточным числом.

Для движения задним ходом используется дополнительный вал с промежуточной шестерней заднего хода.

Схемы передачи крутящего момента на каждой из передач:

Трехвальная КПП: устройство  и принцип работы

Отличие трехвальной механики от двухвальной в том, что здесь используются три вида валов. Помимо ведомого и ведущего также применяется промежуточный вал.

Первичный вал, соединенный со сцеплением, передает крутящий момент на промежуточный. Передача происходит через соответствующую шестерню – таким образом, валы находятся в постоянном зацеплении.

Устройство трехвальной МКПП

Промежуточный вал расположен параллельно первичному, все шестерни на нем жестко зафиксированы.

На одной оси с первичным расположен вторичный вал. За это отвечает упорный подшипник на ведущем валу, в который входит вторичный вал. При этом шестерни ведомого вала могут свободно вращаться и не имеют жесткой фиксации с валом. Шестерни вторичного вала находятся в постоянном зацеплении с шестернями промежуточного вала. Следовательно, в нейтральном положении КПП крутящий момент от первичного вала передается на промежуточный и далее на шестерни вторичного вала. Но поскольку они свободно вращаются на валу, автомобиль не двигается.

Между шестернями вторичного вала находятся синхронизаторы, работа которых заключается в выравнивании угловых скоростей шестерен вторичного вала с угловой скоростью самого вала за счет сил трения.

Синхронизаторы жестко закреплены на вале и за счет шлицевого соединения могут двигаться по нему в осевом направлении.

В отличие от двухвальной КПП, механизм переключения в трехвальной трансмиссии располагается на корпусе коробки и состоит из рычага управления и штоков с вилками. Механизм также оснащен блокирующим устройством для предотвращения одновременного включения двух передач.

Он может также иметь и дистанционное управление. При этом дистанционный механизм переключения обеспечивает кулиса или шарнирные тросы.

Принцип включения передач в трехвальной КПП аналогичен принципу работы двухвальной трансмиссии.

Месторасположение механизма

Что касается того, где может располагаться дифференциал, то это обычно следующие места:

  • У заднеприводных автомобилей – это картер моста, где дифференциал соединен с шестерней главной передачи.
  • У транспортных средств с передним приводом механизм также соединен с главной передачей и находится в корпусе КПП.
  • У полноприводного транспорта дифференциал находится по его обеим сторонам: и сзади, и спереди.

Те полноприводные автомобили, у которых предусмотрено отключение привода, как правило, оснащаются раздаточной коробкой. С целью оптимального распределения крутящего момента на все колеса, предусмотрен еще один третий дифференциал. Он ставится в раздатке между осями.

Что это за зверь такой?

Что же это за механизм такой – дифференциал? С его помощью передается крутящий момент от коробки переключения передач (КПП), и при этом вся мощность делится между ведущими колесами поровну. Но бывают моменты, когда это равновесие нарушается, о чем немного позднее. Главная задача дифференциала заключается в том, чтобы позволить ведущим колесам вращаться с разной угловой скоростью.

Виды, устройство и принцип работы дифференциала

Если в трансмиссии транспортного средства лишь одна ведущая ось, то данный механизм ставится между приводами колес и зовется межколесным редуктором. В случае же полноприводных автомобилей агрегат располагается уже между ведущими осями и именуется межосевым дифференциалом.